1. はじめに

コラーゲン（CLG）の線維形成に与えるムコ多糖（MPS）の影響についてはこれまでCLGの濃厚溶液において多くの研究がなされてきたが、CLG－MPS間の相互作用の本質については明確な知見は得られていない。本研究はこれを示す手法を対象にその溶液性状に与えるムコ多糖の影響を分光法、粘度法、および動的光散乱法により調べた。

2. 実験

2.1 試薬

モノメリックCLGは前報3でのものを用いた。ヒアルロン酸（HL）は陽離子抽出した分子量8,000（HL01）、128,000（HL10）、および1,200,000（HL120）を用いた。また、コンドロイチン硫酸（CS）は牛の気管軟骨より抽出された分子量8,000（CS01）およびサメの軟骨より抽出した分子量16,000（CS04）を用いた。

2.2 溶液調整

前報3と同様の方法により調整した。ただし、CLG濃度は前報3の際の1/10の濃度とした。

2.3 測定

円偏光二色性（CD）スペクトラムを日本分光社製J-600を用いて測定した。粘度測定は25±0.1℃で行なった。また、動的光散乱測定は16±0.1℃で大塚電子製DLS700（光源Arレーザー、波長488nm）を用いて行い、各試料の動的拡散係数（Dd）を解析した。

3. 結果および考察

Fig.1はCLG、CS04、およびそれらの混合溶媒のCDスペクトラムを示す。また、図中に示すように相互作用の指標を混合系のCDスペクトラムとそれ单独のそれと差CDスペクトラムを取ることにより評価した。相互作用は200nm近傍に正のCD带を与え、同様な結果は他のムコ多糖においても得られた。203nmにおける差CD強度の各ムコ多糖の濃度に対する依存性をFig.2に示した。HL系ではいずれの分子量とも濃度の増加にともないCD強度は増加し、CLGに対する重合比10〜20％以上において顕著に変化することに対して、CS系ではこの領域において極大、極小を取った後増加する。

Fig.1 CD spectra of CLG, CS, and the mixture in PBS solution (pH7.4). CLG, 4.4×10^-2 mg/ml; CS, 1.8×10^-2 mg/ml.
Fig. 3 は ドコ多様な濃度に対する CLG の $D_0$ 値の変化を示す。HL 系およびCS系とも濃度の増加に対して $D_0$ は減少する傾向があり、特に CLG の凝集体の成長が推察される。また、これに対応する結果として Fig. 4 の粘度の挙動からも認められた。なお、繊維の $\Delta \eta$ は相互作用に基づく粘度増加の指標を表すもので、各試料の溶出時間およびコラーゲンの重量分率 (x) を用いて $\Delta \eta = \eta_{CLG} + (1-x) \eta_{HL}$ を算出した。この $\Delta \eta$ のHL 濃度の増加はコラーゲン濃度によらず認められた。現在、CS系の $\Delta \eta$ ならびに混合系の極限粘度を測定および解析中である。

以上の着調系における測定結果より CLG-MPS 間の相互作用は分子レベルで本質的に存在するものであり、それは CLG の物理化学的性質に変化をもたらすことがわかった。

Fig. 3 Translational diffusion coefficient $D_0$ as a function of the weight ratio of MPS to CLG. CLG, 0.25mg/ml

Fig. 2 Differential CD intensities at 203nm as a function of the weight ratio of MPS to CLG. MPS: HL01(□), HL120(○), CS01(△), CS04(▲). CLG, 4.4×10^{-2} mg/ml.

Fig. 4 Increments of viscosities $\Delta \eta$ for the CLG-HL10 mixed system as a function of the concentration of HL10. CLG (mg/ml): 0.25 (□), 0.28(▲), 0.31(△), 0.34(○), 0.38(△).

＜参考文献＞

2) M. B. Mathews, Biochem. J., 96 (1965) 710-716