第１章 はじめに

研究の背景

前章においては、脳神経分化において、神経管内胚眥は分化・発達によって終末神経細胞を形成する。これは、神経細胞が分化・発達する過程を理解するための重要な情報である。また、神絨細胞の分化・発達に関する研究は、神経の機能を理解する上で不可欠である。この研究は、神絨細胞の分化・発達を理解し、神絨細胞の機能を向上させるための基礎研究である。

実験方法

ラットの神絨細胞の分化培養

ラットの神絨細胞の分化培養は、ラットの神絨細胞を用いて行った。ラットの神絨細胞は、ラットの神絨細胞を体外に移植することにより、分化・発達する。この方法は、ラットの神絨細胞の分化・発達を観察し、分化・発達のメカニズムを解明するための手法である。

実験材料と方法

実験材料

ラットの神絨細胞を用いた。ラットの神絨細胞は、ラットの神絨細胞を用いて得たものを用いた。ラットの神絨細胞は、ラットの神絨細胞を用いて得たものを用いた。
ヒト胎盤より抽出・精製した単位凝集力を酵素活性値とし、エステル系抗酸化力を検討した。さらに20μMのmercaptoethanolと15μMのAcodazoleにより酵素活性をやや低下させ、次いでDEAE-セルロースとCH-セルロースを温度を用いて4型コラーゲン合成を検討した。

次にこの4型コラーゲン合成GislowおよびMcBrineの方法に従い、4-hydroxyanhydrideを触媒として、

b) 酸面系抗酸化力

用試料細胞数と凝集力の添加液は、4℃にて凍結し、原液処理して60％に濃縮し、酸化材料として、

b) 酸面系抗酸化力

用試料細胞数と凝集力の添加液は、4℃にて凍結し、原液処理して60％に濃縮し、酸化材料として、

1. 有酸化細胞

a) 善性細胞

善性細胞の酸化皮膚細胞の培養液を、3日間の培養培養中に4型コラーゲン合成酵素活性を測定した。結果と図より、LPS添加においてもそばを生じなかった。

b) 罹患細胞

罹患細胞の酸化皮膚細胞の培養液を、3日間の培養培養中に4型コラーゲン合成酵素活性を測定した。表より、LPS添加においてもそばを生じなかった。

c) 罹患細胞の酸化皮膚細胞の培養液を、3日間の培養培養中に4型コラーゲン合成酵素活性を測定した。表より、LPS添加においてもそばを生じなかった。

c) 罹患細胞の酸化皮膚細胞の培養液を、3日間の培養培養中に4型コラーゲン合成酵素活性を測定した。表より、LPS添加においてもそばを生じなかった。
表1. 豚細胞培養液のinhibition test。

<table>
<thead>
<tr>
<th>試料液</th>
<th>副効</th>
<th>比没性</th>
</tr>
</thead>
<tbody>
<tr>
<td>コントロール</td>
<td>—</td>
<td>100 %</td>
</tr>
<tr>
<td>p-CMB</td>
<td>2 mM</td>
<td>98.9</td>
</tr>
<tr>
<td>PHS F</td>
<td>5 mM</td>
<td>66.5</td>
</tr>
<tr>
<td>DTT</td>
<td>10 μM</td>
<td>98.7</td>
</tr>
<tr>
<td>1,10-phenanthroline</td>
<td>5 mM</td>
<td>59.6</td>
</tr>
<tr>
<td>EDTA</td>
<td>20 μM</td>
<td>53.3</td>
</tr>
</tbody>
</table>

(A: thengkimering sulfate fluoride in 10% dimethyl sulfoxide, B: dithiothreitol)

細胞培養液中にコラーゲン分解酵素を発現する細胞についてあることを示した。1型コラーゲン分
解酵素の有無や、細胞増殖の影響についても、また
1型の細胞を豚内腸細胞を用いたりに単
位を上での方法などは現在検討中である。

細胞型コラーゲンの分解酵素の有無については、LPS
の添加の有無により大きく影響される。LPS添加で
早期に有意な差が見られた細胞型コラーゲンの抑制には、
ケモメチンによる細胞増殖と機能をも含めるもので検証
される。

豚の皮膚細胞は、豚内腸細胞に2型繊維
（あるいは3型以上の）醜性が含まれ、いず
れも1型コラーゲンを分解する可能性が示唆さ
れた。これはsevere proteinasesに傾くさ
れは、Maineraらが豚皮膚における細胞を
いる。

いずれも1型コラーゲンの分解酵素に
影響を与える酵素である。1型のinhibition testの前後からはこれまで増減してい
た。LPS添加ではいずれの細胞も増減されまく

2. 豚内腸繊膜のinhibition test。
文献
1) Okazaki, I., Tsuchiya, K., Imanseguna, K.,
　Bibliotheca Anatomica 12,476-485
2) 様崎一男 (1979) 腹部医学 56,343-358
3) Karuyama, K., Okazaki, I., Shigeta, Y.,
　Ishii, K. and Tsuchiya, K. (1985) Patho-
　biology of hepatic fibrosis (Hirayama,
　C. and Kivirikko, K.J., eds) pp.131-140
　Elsevier Science Publishers
4) Jeejeechoy, J., Ho, J., Greenberg, J.,
　Phillips, J., Bruce-Robertson, A. and
　Sotke, C. (1975) Biochem.J. 146,141-
　155
5) Knox, J. and Sleyster, B. (1976)
　Exp.Cell. Res. 95,444-449
6) Lianville, R., Katz, A. and Metzke,
　R. P. (1973) Endocrinology 95,360-
　369
　Anatl.Biochem. 65,70-76
8) Liotta, J.A., Try. Vason, P., Jarvis, L.,
　Sehron-Obey, J. and Abe, S. (1961)
　Biochemistry 20,100-104
9) Kasihazaki, K., Ibus, K.S., Seyer, J.M.,
　Gastroenterol. 90 (in the press)
10) Mainardi, J.L., Dixit, S.N. and Kang, A.H.
11) Liotta, J.A., Abe, J., Sehron-Obey, P.,
　Acad.Sci.U.SA 76,2263-2272