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Change-detection system in sensory environment

Naofumi Otsuru

Abstract

The detection of sensory change is important for survival. A change-detection system requires

a comparison with the past status. Therefore, the system does not only rely on the peripheral

stimulus but also reflects the magnitude of deviance between a past sensory status and new

sensory inputs and the accumulation of sensory history prior to the change. In this review, recent

progress made in the study of human change-detection systems using electroencephalography

and magnetoencephalography has been described. We have also discussed the possibility that an

activity consistent with the simple onset paradigm, which has been used in many studies, may be

involved in the change-detection system. As change-detection-related activity represents a pre-

attentive automatic process with good reproducibility, it may be considered useful for clinical
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Figure 1. A model to explain change-detection system.
New sensory inputs are always compared with
prediction based on sensory memory of past status.
When there is the difference between prediction and
sensory inputs change-detection activity is evoked.

Change
detection



H AR B A T AR

KEWITE, QEATHHMERUTD DL Lwv) Filll
AEITEEWITE (BRREBEEOEFRESRET U
Fwizd) MRk¥yrLfEsns. 72, O0Z lE
LWV HIZBWTIE, Al BARBIO X5 12872 7Rk
HANOREZTFTIERL, FL TWEEATI O
HELZDV AT LZERETHHDEEZEZ ONL. KA
FZCOMEISNLETFVE D &I, HHE, MEBIO
HEDOZLIEERICBIT 2B Y AT A4 T 5
5B %, W% (Electroencephalography : Ll FEEG)
B X OV % X (Magnetoencephalography @ L F
MEG) ZHWTHEILT&7z. LT —2i3#%b+
B0%, AL Y A7 AT 5 L b A iEEN
EEGB X O'MEGIZ & - THB 2D PR3 & < Gk
HIENTEDL., 72, ZOZEAMRIEY 25 2 D5H)
d%@ﬁ@mﬁﬁ%éfm S E AL VIRt =R N S

B EZ T TICRERT A I ENWEETH Y, R
DISHEDEWEEZ BN, AT, EA42T7-
TE/PEREEMBICBITAUET—% 2 b L1, &1k
Bt 3 A7 A OEFFENERICOVWTELE T 5. T2,

% DWFZETHW LN T W B BB L Ol il & 45
E DR I CE/R L72BRICRLEk X A ONTEE O
Bl b —iL, COZMmIT AT A% ML 7
HECTH L HREMEICE L THMHT 5.

2. BBV AT LICES T DRMERL

JEEERIE DR OEAIISE T L WAL LT
(&, Downar 5 H3FEBE B AL I {57 (functional
magnetic resonance imaging L F{MRI) % J w724
FRERZWE LT EY. ZomFRTIE, R, i,
AR FE RSB E 12526, ZoobEnh
—DDREILIZNTHZEIR [ZAL] ¥ 5 & & DOIHE) % 5l
LTV, Ok, HBREICIFEDY Z7135 2
LNTBELT, HLFTTENITHIME 2T 5 5%M4:T
%%ﬁ%ﬁo“(b\% FERE BRI LEIBER, il T

TURARE R, AR TR SRR M B X OV middle
occ1p1tal gyrusiZBWT, FREIZBIT SR 0%L
W2 U CEW G A ﬁibé CEPIRINT F
IS OIEBERALE, [F— DR D B L BEREh
TWABHRHIXIEEIZI LA R E o7z, Thbb, 2
o DIGERTANI RN 5 DKL AN Z DD DITINE
FTAHDTIE L, KRERBEIIEMPEZ -2 2H
BRI T 5 [ by A7 4] 2L 7-158)
ThbrbEEZLNT.

NS DIHFEAENZ 2L AT 4] 2 WL
TWwaETUE, TOFHREEHIRALZETVICH

55207 25 (2017)

TEFLEVIEFHDD &, IMRI X v b BRI HEREDS
EWMEG B X OFEEG % JH W Tk 4 2397 - T X 71 5¢
2, TINS5,

3. MEG TEHEENDE(EE Y AT LDiEE)

M2k, FHIC3IPMoOBELMH 053 VB0
I, 50Hz) %ISR L7zBIC, H#omd (ON) &l
BT (OFF) 126f LTAEL 5 IR EEEE On
%, MEG Ttk L7-#ERTH L. ZOR, BEREIE
HEHEOCFF 2 RTBY, FEICH L CEEZ T %
WEINICHRREN TS, FEHITREE, Wlo =%k
PPk B DTG E) (cPara, iPara) 13, #l# OB (ON)
LHIBOKT (OFF) OAIZBWT, —#MEoGH %
RTZETH . 50Hzo>ﬂimﬁi~"~7‘ ﬂ@‘éﬂﬁﬂﬂﬁ
e BB E — RV IR LB (cSI) TO ML 2%

B, TOZ R, TREMTEIREE OGBS, ﬂim%w
iy vk 50-9'B’§’)‘Wi%fl75 U7 & v 9 2L (onset)
., RIS TV BIREED & 228k L L 72 &
WAL (offset) 1hf§ B LMY 27 A %#H 5T
W5 Z L &R Rl ?‘6%%@66”.

RO TR IR B 12 30T A GE) & A AR 0 G B

W, R RS WEIJ(DMEIJEEIEI (Lt-STG, Rt-STG)

Figure 2. The activity elicited by the onset (A) and offset
(B) of somatosensory stimulation. C and D show the
location of each activity. Adapted from Yamashiro et al.
(2009a).
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Figure 3. The activity elicited by the onset and offset
of auditory stimulation. (A) Superimposed waveforms of
the activity in the superior temporal gyrus. (B) Location
of each activity. Adapted from Yamashiro et al. (2009b).
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Figure 4. Effects of the magnitude of deviation on
change-detection activity. Sound pressure, sound
frequency, and sound location deviations were tested.
The mean amplitude across subjects are plotted against
the degree of the deviation of each variable. Adapted
from Inui et al. (2010).
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Figure 5. The activities in the contralateral secondary
somatosensory cortex (cSll). Left: Time course of
the activity in each condition. Right: The mean peak
amplitude across subjects is plotted against the
magnitude of deviance. Adapted from Otsuru et al. (2011)
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Figure 6. Effects of duration of the preceding condition on
the amplitude of the response elicited by ON, CHANGE,
and OFF. (A) superimposed waveforms of the activity
in the right superior temporal gyrus for all the subjects
(gray) and respective grand-averaged waveforms (black).
(B) the mean amplitude of the right superior temporal
gyrus activity plotted against the duration of the
preceding condition. Adapted from Yamashiro et al. (2010).
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Figure 7. The activities in the contralateral secondary
somatosensory cortex (cSll). Left: Time course of
the activity in each condition. Right: The mean peak
amplitude across subjects is plotted against the duration
of the conditioning stimulus. Adapted from Otsuru et al.
(2011)
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The mechanism and treatment strategy for immobilization-induced
hypersensitivity in rats

Yohei Hamaue'?, Jiro Nakano”, Junya Sakamoto?, Minoru Okita®

Abstract

Cast immobilization is known to induce mechanical hypersensitivity, which disturbs rehabilitation.
Some studies suggested that central neuronal sensitization may contribute to immobilization-
induced hypersensitivity.However, there is no research in effective treatment for immobilization-
induced hypersensitivity so far. We suggest that the lack of sensory input to peripheral tissue
due to immobilization might induce changes to the nervous system, and cause immobilization-
induced hypersensitivity. Therefore, to prevent immobilization-induced hypersensitivity, sensory
input should be delivered from peripheral tissue. We proposal the vibration therapy as the sensory
input during immobilization: it has been reported that vibration therapy can reduce various
types of pain. However, it is unclear whether vibration therapy reduce immobilization-induced
hypersensitivity. To investigate the preventive and therapeutic effects of vibration therapy on
immobilization-induced hypersensitivity, rats were immobilized for 8 weeks and divided randomly
into 2 immobilization plus vibration groups (Im+Vibl and Im+Vib2). Im+Vibl group, for which
vibration therapy was initiated immediately after the onset of immobilization, and Im+Vib2, for
which vibration therapy was initiated 4 weeks after the onset of immobilization. To investigate
central sensitization, calcitonin gene-related peptide (CGRP) expression in the spinal cord and
dorsal root ganglion (DRG) was analyzed. As a result, immobilization-induced hypersensitivity was
inhibited in the Im+Vibl group but not in the Im+Vib2 group. Central sensitization, which was
indicated by increases in CGRP expression in the spinal cord and the size of the area of CGRP-
positive neurons in the DRG, was inhibited in only the Im+Vibl group. Vibration therapy might
be an effective technique to supplement the loss of sensory input and to inhibit hypersensitivity.
These data suggest that initiation of vibration therapy in the early phase of immobilization may
inhibit the development of immobilization-induced hypersensitivity.

Key words: immobilization, hypersensitivity, vibration, CGRP, rat
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Fig. 1. Rat model of immobilization-induced
hypersensitivity and the time course of changes in the
mechanical sensitivity of the hind paw. Paw withdrawal
response (PWR) was measured during 10 repetitive
stimulations with 15-g von Frey filaments in the
immobilized paw. The data are presented as mean = SE.
*P < 0.05, significantly different from the control group.
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Fig. 2. Intensity of calcitonin gene-related peptide (CGRP) expression in the ipsilateral dorsal horn of the spinal cord.
Representative photomicrographs of CGRP immunostaining in the ipsilateral dorsal horn in the control. The CGRP-
positive neural fibers in the deep layer of the dorsal horn were clearly observed only in the Im8w group (A). Scale bar
= 50 u m. The percentage of control fluorescence intensity of the CGRP expression in the ipsilateral superficial layers

(laminae I-II) and deep layers (laminae III-VI) (B) was calculated. The data are presented as mean

+ SE. "P < 0.05,

significantly different from the control group. #P < 0.05, significantly different from the Im4w group. The cross-sectional
area of CGRP-positive cells in the DRG (C). Histograms of CGRP levels in ipsilateral DRG neurons in the Control (A),

Im4w, Im8w groups are shown.
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Fig. 3. Immobilization-induced changes of sensory neuron. Calcitonin gene-related peptide is produced in a selective
subpopulation of sensory neurons of small and medium size in the DRG. It is mainly produced in small neurons with
nonmyelinated axons and medium-sized neurons with myelinated axons that release it to the superficial (laminae I and
II) and deep layers (laminae III-VI) of the dorsal horn of the spinal cord, respectively. Hence, the increases in CGRP
expression in both the superficial layers (laminae I and II) and deep layers (laminae III- VI) of the dorsal horn in the
immobilized rats indicate overexpression of CGRP by both small and medium sized sensory neurons in the DRG.
These phenomenon is named phenotype switch of primary sensory neurons and it may cause immobilization-induced

hypersensitivity.
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Control normal condition

Im immobilization

Im+Vibl immobilization + vibration therapy

immobilization +
therapy

0 2 4 6 8
weeks

Im+Vib2 immobilization

Fig. 4. The experimental protocol (A) the application of
vibration (B). Vibration therapy was initiated just after
the onset of immobilization in the Im+Vibl group and
continued throughout the immobilization period (8 weeks).
In the Im+Vib2 group, vibration therapy was initiated
4 weeks after the onset of immobilization and continued
until the end of the immobilization period (4 weeks).
Vibration stimulation was performed for 15 min, once daily,
5 days per week, in both groups. The arrow indicates
a rat paw (B). The arrowhead indicates the head of the
vibrator. Im: immobilization-only group. Im+Vibl: vibration
therapy group 1, in which vibration therapy was initiated
immediately after the onset of immobilization. Im+Vib2:
vibration therapy group 2, in which vibration therapy was
initiated 4 weeks after the onset of immobilization.
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Fig. 5. Time course of changes in the mechanical
sensitivity of the hind paw. Paw withdrawal response
(PWR) was measured during 10 repetitive stimulations
with 15-g von Frey filaments in the ipsilateral paw. The
data are presented as mean * SE. *P < 0.05, significantly
different from the control group. *P < 0.05, significantly
different from the Im group. *P < 0.05, significantly
different from the Im+Vibl group. "P < 0.05, significantly
different from the baseline in each group.
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Fig. 6. Intensity of CGRP expression in the ipsilateral
dorsal horn of the spinal cord. Representative
photomicrographs of CGRP immunostaining in the
ipsilateral dorsal horn in the Control (A). The CGRP-
positive neural fibers in the deep layer of the dorsal
horn were clearly observed only in the Im and Im+Vib2
groups. Scale bar = 50 u m. The percentage of control
fluorescence intensity of the CGRP expression in the
ipsilateral superficial layers (laminae I-II) (B) and deep
layers (laminae III-VI) (C) was calculated. The data are
presented as mean * SE. "P < 0.05, significantly different
from the control group. #P < 0.05, significantly different
from the Im group. § P < 0.05, significantly different from
the Im+Vibl group.
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Fig. 8. The schema of the treatment strategy
for immobilization-induced hypersensitivity. Cast
immobilization causes hypersensitivity and central
sensitization, possibly due to the lack of sensory input to
peripheral tissue.Hence, sensory input may be effective
for preventing the induction of hypersensitivity in
patients undergoing cast immobilization of a limb in
clinical rehabilitation.
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Mechanistic investigation of Achilles tendon disorder development

using anatomical methods

Mutsuaki Edama

Abstract
Although AT disorders do not typically become severe, they occur frequently and are considered
to be one of the disorders that are difficult to manage. Recently, several effective treatment
methods were reported; however, there are currently no effective methods to prevent this disorder.
The reason for this could be that the mechanism of the disorder itself is not completely understood.
This is most likely why the incidence of AT disorders is very high and why preventive methods
are not well-established. In recent years, attempts have been made to elucidate the mechanism
for the occurrence of AT disorders based on past research, with much attention to the twisted
structure of the AT as a cause. There are numerous studies from the past several decades
concerning the twisted structure of the AT. Several studies have unanimously reported that ATs
are composed of an insertion tendon where the medial head of the gastrocnemius, lateral head of
the gastrocnemius, and the soleus muscle insert, exhibit twisted structures, and are all twisted
in the lateral direction without exception. But, a consensus has yet to be reached in terms of the
extent of twisting. In this paper, we introduce the anatomical studies that we have carried out in

recent years as a basic research for the elucidation of the generation mechanism.

Key words: Noninsertional Achilles tendinopathy, Insertional Achilles tendinopathy,
Generating mechanisms, Achilles tendon, The twisted structure
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ANV AYDPELDZEDPREEREAD XL TSR
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2) ATDOhigE GERDORE)

AT D¥RIMERE I L TIE, #@IRZ2HWR T,
Cummins 5 1Z1008 % F VT, ¥4 Feke 1 55 6 1
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WAL TWwS, F72, f@ho il L T, AT
AL S B & EAM AT TIEOKEFHE ) o J5 i,
M AT TEFREEH ) O HANENTW S EHE LT
W5, LA L, Cummins 5™ 1%, ATZBEEmE 5
A (Sol) DFFIE DA I3 2 BERLHE S D A L A5
LTwaw, —7, Szaro 5™ 13, 40Mi%ZHW<C, AT
x BERE A NS (MG), BEREFZMAIEH (LG), Sol ®fh
A 13 2 R tRAE A ol L, B BEAh  EAE
OB OB 2 55 LTV b, ZOkE, MGlEF
@AM, LGIZEERE, SollxREWNMENIALE LTz
WELTWAS. —7, Van Gil 5913, 16f1% VT,
MBS B L 22 MR a2 TR R o i B B Bfilifb L
THEY, 11-65°DIENTH o2 EHEL T, T2,
x5 R IR & LTV 2 A8 Schepsis 5 13290°,
Smigielski 5'” 1330-150°E M TV 5 L HE LTV 5
BhoFICE L TlE, Cummins 52 LBETH 5
EHELTWA. IS DEITHENS, ATZFN
lfEhThy, Foighokm (AT ZEM25 R
7o & EHMAT CUERIERIE ) o~ ZEMAT T
GEERHE ) o ~Eih) ISR LT gl L2 A
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Z 2 THA I, ATOfaNHEE %2 MG, LG, Sol®d
753 % BERRHE R L~V CREMNC MG L €, fahoft
BEIG LTz T 72,
OxtR & FHE

L, HARNEAKCOAKIION (7771165, B4
7T6MI, LVE3AH) EIH T ARBFZE T, SEARERE
PRAFE L AR ICE D S HE LMD 72D 1Tk &
N7-fEHRE M L7z 983, Soloff %7 %
ATHMER ORI FEREOGRE (S 125
T5bD% Type I (least), LG & Soldf}#3 % AT
AR AT B O (g M) SHET250
% Type I (moderate), LGOf}# 3 5 AT D
AoEgREREOEE (WEEHH) HET5b0%
Type ll (extreme) (/- L7z, HIZHMAEREZ 3~
Amm FEE ORHER T THIA < 8L T, EBATE MES
L7-.
QOfER

ATIEMG + LG, SolDf}#5 3 % & BERHE R A3
WKIENZVBORELTBY, ATZEA,» 6 RTHM
TIEEEETE D, AMCIERENR ) g2 2L
Tz s IOV T, Type I 2554
(50%), Type 023471 (43%), Type WAH8M (7%)
TdH o7z (Figure 1) . FZMHMER O ELTIZO W TII,
FRAE R % 3 — Amm FEEE OMRHER L NV TRl < 43
HEL T &, MGOMAMERIE, 2 TOHETHEKW

Type I <Least> Type Il <Moderate> Typell <Extreme>

55feet(50%) 47feet(43%) 8feet(7%)
Figure 1. The patterns of “twist” of the left Achilles

tendon, posterosuperior view."®

L: Lateral, M: Medial, A: Anterior, P: Posterior.

The lower schema: Transverse cross-section through the left
Achilles tendon, 1 cm above the tuber calcanei.

MG: Fibers from the medial head of the gastrocnemius. LG:
Fibers from the lateral head of the gastrocnemius. Sol: Fibers
from the soleus muscle.
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Type I <Moderate>

Type I <Least> Typelll <Extreme>

Figure 2. The running of each fiber bundles of each
classification, the left Achilles tendon, posterior view.'®

White line: Site of the twist of the fiber bundles from the
soleus muscle, 3-5 cm from the calcaneal tuberosity attachment
section.

I-b, II-b, III-b: Schematic illustration of the each fiber
bundles. Red line: Fiber bundles from the medial head of the
gastrocnemius, number 1-5. Blue line: Fiber bundles from the
lateral head of the gastrocnemius, number 6-9. Green line: fiber
bundles from the soleus muscle, number 10-14.

LG: Fascicle from the lateral head of the gastrocnemius. MG:
Fascicle from the medial head of the gastrocnemius. Sol:
Fascicle from the soleus muscle. L: Lateral. M: Medial.

SATISET LTV A DI LT, LGE Solid, Type
I-MZBWTIHEN LA SEFEREICAHELTBY,
FEIZ Type MICBWTRIENDSBNMER TH - 7. B
(2, Sol DIEN DAL, FEAT B2 5 A S I fr3-
S5cm D& TH - 72 (Figure 2).
QER
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I 720 T < R b, ARCEE ECE A LB
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SSem DHFATH o 72, 7 F L AMAE O UFFEFRAL I,
AT OFEFAF 5T A 5 i 2-6cm Th 0 % MG
BZLWZENFERE LTEIFSRTWE. 2ol
MAHG D Z L WA WIEN DO X ML A2 5 Z

DS, THFRLUVABIEDREERD—DTId R &
ENT.
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Wl & DA BIAETR R L HELTwD, 2
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3) EEREMBEBOIBNMEEDET3EE>DRE™
OKREARHE

Z 2 CTHEAIL, HARNEARTIARLI0M P45 -
782111, B1ESSM, ZE45M) % H v TR Bk
BT O AT OFG I & W B A A5 5 &2 B 5
PICT BT ERHE LTHIZE R 1T o 72, ABFZETIE,
TEARFRINRAEE: & BRI IR D X BE E e 72012
BRAR S N 7SR 2 U 7z, Mg BRI o KT
AR RIE IR Y2 TEICREL T, ATOME
BRMERZHOPICLYA THEY 27o72 %
7=, SEATERZE® 12HE UC, B FEHE % superior facet,
middle facet, inferior facet ®3&ERA I3 L T, AT
G B K HE R O A TR 2 B & A L 7-.
OfER

IR O HIZ O W T, Type TIZ31H (24%) |
Type 1387 (67%), Type MiZ12f1 (9%) TH Y,
Type UKD %Z L FLEL (Figure 3). AT OfEE
FEACA 25 SRS DWW TUE, HEE P @ superior facet
WX BRI EAE L, AT OZHHER O —EB
¥ middle facet & inferior facet DB FIAF 759 5 MfR
MEQAEAE L 72, KB4 id middle facet \2fif# L CTw»
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Type I <Least> Type I <Moderate>  TypeIll <Extreme>

31 feet (24%) 12 feet (9%)

87 feet (67%)

Figure 3. Patterns of “twist” of the right Achilles tendon,
posterior view.”

Type I (least twist): with only Sol attached to the deep layer
of the calcaneal tuberosity (calcaneal side). Type II (moderate
twist): with LG and Sol attached to the deep layer of the
calcaneal tuberosity. Type III (extreme twist): with only the
LG attached to the deep layer of the calcaneal tuberosity

LG: Fibers from the lateral head of the gastrocnemius. MG:
Fibers from the medial head of the gastrocnemius. Sol: Fibers
from the soleus muscle. Blue: Fibers from the lateral head
of the gastrocnemius. Red: Fibers from the medial head of
the gastrocnemius. Yellow: Fibers from the soleus muscle. L:
Lateral. M: Medial

Superior Facet

Middle Facet

Inferior Facet

Figure 4. Site of attachment to the calcaneal tuberosity of
the Achilles tendon. Right calcaneal tuberosity, posterior
view.®

The calcaneal tuberosity was divided into three parts: a
superior facet; middle facet; and inferior facet

Blue: Fibers from the lateral head of the gastrocnemius. Green:
Retrocalcaneal bursa. Red: Fibers from the medial head of the
gastrocnemius. Yellow: Fibers from the soleus muscle.

7z (Figure 4).
QER
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Contribution of musculoskeletal simulation analysis to motion analysis
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in physical therapy

Shinya Ogaya’, Yusuke Okita”

Abstract
Musculoskeletal simulation models that estimate the muscle tension force are widely used to
explain muscle and joint function during motion. This model has an advantage to calculate muscle
tension force and joint contact forces during motion with noninvasive gait measurement. The
musculoskeletal simulation model-based analysis enables easy access for researchers to predict the
joint contact force during human motion and determine the risk of osteoarthritis. It can also clarify
the direct relationship between muscle tension force and joint angular acceleration or acceleration
of the center of mass. Determination of which muscle supports body weight or controls joint
motion will provide basic knowledge for physical therapists. In addition, determination of how
patients maintain kinematic equilibrium during motion can help understand the patient-specific
compensated strategy and decide on an appropriate intervention. This paper focuses on the
introduction of the basic concept of musculoskeletal simulation analysis and applications of the

result of previous studies to motion analysis in physical therapy.

Key words: Simulation, Kinesiology, Biomechanics, Gait, Balance
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1. BOETIUE
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BHEOZ L DMmEKY I 2 L—3 a3 VIITETIVIC
BWT, HiOFFIVILHI model THIHE NS Z LS
%\ (Fig. 1). SOEFIVEFHOIGHER, e
W7 & OIEFI VRS, B & OB R —
R %o 72 AR TR SN 5. FioJHigh
A OB AR, FhiGEbE, EAW, HRA
MOES, HOMEE, BoOESZEL BRI
WERZZTH. 22T, Homilyr—45 (GBI
LA, AP, REmELE) &, AR
Fr—5 (HoRs -iRIEK, #E-RHBERE L)
FRANCBRERZBN TR Z LT, EROREEF S
L7HETUAIMED FiFohTna.,

COXIICLTHESNHENZE R EE2T] o0
HAHENTHY, B THLEMHE— XY FERD
LD E— AV N T — 2230 T A20EN DS,
E— XV b7 = 2NEBEE RO S OESTE TOHHE
THbH720, HOEITVAHPIUTRD D ZENTE 5.
LH»L, okt EibidBEHizErIicdoT
BALT B7280, HOE— A ¥ 7 — AT EE K
Hyh, 22T, HBEKYI2L—Y a3 VBITETL
T DR L OIFH F 7 — & & B\ K B RIS
B2 E—A Y M7 —ADEBERTWEY . Zhi
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CE

SEE
PEE

Fig. 1 lllustration of Hill model. Three-element Hill type
model of a muscle including contractile element (CE), parallel
elastic elements (PEE) and serial elastic elements (SEE).

40

30

20

o T

Hip flexion torque (Nm)

- -
- -
-
-
- -
- -

0

20 <10 O 10 20 30 40 50 60 70 80 90
Hip flexion angle(degree)

Fig. 2 Change in hip flexion torque with hip flexion
angle generated by hip flexor'®
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Fig. 4 Schematic of segmental acceleration and force
generated by soleus muscle
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motions in the ankle and hip strategies, respectively. K2 mi 5 LIS ANEL DS D 5 72 BRICIE N A X MY
200 -
B HIGH Up
oLow —
*[C
100 -

50 -

*
*
Long ham ] % |_|

lliopsoas Gravity
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50 - Net Soleus Gastro Long Short Gluteus
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= 100
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Gravity = -150
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Fore-aft acceleration (m/s?)

Fig. 6 Contributions of the individual muscles and gravity to the fore-aft (left) and vertical (right) center of mass
accelerations during the forward body tilting phase. Positive values indicate forward and upward acceleration in the
left and right figures, respectively; the * symbol indicates a statistically significant difference (p < 0.05). Gastro,
gastrocnemius; long ham, long hamstrings; short ham, short hamstrings.
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Measurements for sensorimotor processing in the brain
using magnetoencephalography

Kei Nakagawa, Takeshi Imura, Louis Yuge

Abstract

It is important to evaluate the efficacy of physical therapy using brain mapping technologies.

Magnetoencephalography (MEG) is one of the powerful noninvasive tool for examining the temporal

and spatial aspects of motor and sensory processing in the brain. In this paper, MEG responses

elicited by voluntary movement and innocuous somesthetic stimuli were reviewed. 1) Movement

related cortical fields were enhanced by voluntary bilateral hand movement in a patient with mild

hemiplegia. 2) Clear sensorimotor responses were detected by imaging motor tasks without any

body movement. 3) MEG can detect a quick detection system of abrupt changes in the sensory

environment (change-related response), which is an index of evaluating sensory memory process. 4)

Somesthetic responses were inhibited by inserting a weak leading stimulus, which indicates the

presence of an inhibitory process beyond a simple reduction in response-generating activities. These

findings will be helpful in further evaluation for physical therapy of the central nervous system.

Key words: Magnetoencephalography, Evaluation, Sensory function, Motor function,

Neurorehabilitation
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Fig. 1

Movement related cortical fields of a patient with mild hemiplegia.

(A) A forearm pronation device that allows repetitive precise movements. The range of motion was 0-30° ; after 30° of movement,
the plate passively returned to the initial position. The onset of movement was detected by a light-emitting diode (LED) trigger.
(B) Data of 12 gradiometers around the left sensorimotor cortex. The MEF amplitude for bilateral movements was much larger

than unilateral movement (arrows).
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Dominant hand (R)

Non-dominant hand (L)

Fig. 2 Event related desynchronization/synchronization (ERD/ERS) elicited by motor imagery tasks.

(A) A schema of ERD/ERS. After movement, the power of beta oscillations rapidly exceeds premovement levels (ERD) before
returning to resting state levels (ERS). Oscillation changes have been suggested to reflect the inhibitory function of cortical and

subcortical circuits.

(B) Topography maps with peak amplitudes of ERS of a representative healthy participant when he image to open/shut

chopsticks with his dominant or nondominant hand.
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Fig. 3 Somatosensory evoked magnetic fields following left median nerve stimulation.

(A) Waveforms from 204 gradiometers. Three clear components (a-c) were detected in the early phase after the stimulus. The
stimulus was a current-constant square wave pulse that was 0.2 ms in duration at the motor threshold.
(B) Isocontour maps (40 fT/step) of the three components (N20m, P35m, and P60m). Areas surrounded by lines in the isocontour

map show the outflux and influx of magnetic fields.

(C) Locations of the equivalent current dipoles (ECD) of the three components. The P35m ECD was located medial to the N20m
ECD, and the P60m ECD was located posterior to the N20m ECD.
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Fig. 4 Auditory change related responses

760 (ms)

500

(A) Auditory stimuli. A click was presented binaurally at 100 Hz for 700 ms. A subtle blank (0-0.45 ms) was inserted into the right
ear at 400 ms (Change onset). All participants perceived the test sound with the 0.45 ms blank as a sound source shift from the

center of the head to the left ear.

(B) Superimposed waveforms of all the channels from a representative participant. In the time axis, 0 ms represents the onset of
auditory stimuli, and the sound location change that occurred at 400 ms. The solid lines (a), (b), (c), and (d) represent prominent

magnetic responses of onset and change-related responses for Control and I'TD-0.45.
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Fig. 5 Evaluation of somatic inhibitory function.

(A)Stimulation paradigm. The left median nerve was stimulated percutaneously using a conventional felt-tip bipolar electrode. The
intensity of S1 was 1.1-fold ST (sensory threshold), and that of S2 and S3 were 2.5-fold ST. In Double session, a leading stimulus (S1)
was presented 100 ms before S2, which was presented 500 ms before S3.

(B)Results from the equivalent current dipole analyses for the contra-lateral secondary somatosensory cortex. Although S1 itself

elicited only weak cortical responses, it markedly suppressed responses to S2 (white arrow, Double v.s. Single).

However, the

suppression of S3 elicited responses were not different between the two conditions (black arrow).
(C)The peak amplitude of S3 evoked responses (mean * standard deviation).
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The role of loading intensity and volume in neuromuscular electrical
stimulation-induced skeletal muscle hypertrophy

Koichi Himori”, Daisuke Tatebayashi’, Yuuka Ohyama”, Tatsuhiko Aoki®’, Takashi Yamada"

Abstract

We aimed to investigate the role of loading intensity and volume in neuromuscular electrical
stimulation (ES}induced skeletal muscle hypertrophy in rats. Male Wistar rats (8—9 wk, n=35) were
assigned randomly to the following groups. Experimental (EX) 1: 60%FAIL (n=6), 60% of maximum
isometric torque (MIT) to task failure at supramaximal voltage (45 V); 30%VM (n=6), 30% of MIT with
volume-matched to 60%FAIL; 15%VM (n=6), 15% of MIT with volume-matched to 60%FAIL. EX2:
30%FAIL (n=6), 30% of MIT to task failure at supramaximal voltage; 30%1/4V (n=6), 30% of MIT with
1/4 volume of 30%FAIL; 30%1/8V (n=5), 30% of MIT with 1/8 volume of 30%FAIL. For ES training,
left plantar flexor muscles were stimulated via a surface electrode (05 ms pulse, 50 Hz, 2 s on/4 s
off) every other day for 3 weeks. The contralateral right muscles served as control (non-ES). In EX1,
the gastrocnemius muscle weight normalized to body weight MW/BW) in ES side was increased
above non-ES side by 109+13%, 6.6+11%, and 35+05% in 60%FAIL, 30%VM, and 15%VM groups,
respectively, with a greater gain in 60%FAIL than 30%VM and 15%VM. In EX2, MW/BW was higher
in ES side than in non-ES side both in 30%FAIL (6.1£1.3%) and 30%1/4V (6.8+1.2%) but not in 30%1/8V
groups, with no difference between groups. Moreover, the extent of muscle hypertrophy was higher
in 60%FAIL group than in 30%FAIL group, despite the loading volume of 60%FAIL group was about
half of that in 30%FAIL group. There was no change in myofibrillar protein concentration between ES
and non-ES side in all groups examined. These data suggest that the higher loading intensity, rather
than the loading volume, is recommended to maximize muscle hypertrophy with ES training.

Key words: Neuromuscular electrical stimulation, Hypertrophy, Loading intensity, Loading volume
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Figure 1. Procedure for neuromuscular electrical
stimulation training. Under anesthesia, the animal was
placed in a supine position and the experimental imb was
attached to the footplate connected to a force transducer.
The foot was placed at 45° angle of dorsiflexion. The plantar
flexor muscles were stimulated using a pair of electrodes
on the skin surface (A). Torque traces were displayed on a
monitor (B), and the stimulation intensity was progressively
increased throughout the stimulation period in order to
maintain a peak torque corresponding to 60% of maximum
isometric torque (C).
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15%VM# (35+05%) B &£ UB30%VME (66+1.1%)

A 60%FAIL b 30%FAIL
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2 0 Ak
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Figure 2. Typical torque traces of neuromuscular electrical
stimulation training in loading volume-matched (4-C) and
loading intensity-matched groups (D-F). 60%FAIL, 60%
of maximum isometric torque (MIT) to task failure at
supramaximal voltage (45 V)(A); 30% VM, 30% of MIT with
volume-matched to 60%FAIL (B); 15%VM, 15% of MIT
with volume-matched to 60%FAIL (C); 30%FAIL, 30% of
MIT to task failure at supramaximal voltage (D), 30%1/4V,
30% of MIT with 1/4 volume of 30%FAIL (E); 30%1/8V,
30% of MIT with 1/8 volume of 30%FAIL (F).
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WHRE AR L7z (Fig. 3A)

FEE 2 TlX, HBERLOHEBER/MAEDS,
ESHIZHARESHIZHBWT, 30%FAILEET6.1+1.3%,
30%1/4V # T68+12% ¥4 Jm L 72 (Table 1). — 7,
30%1/8VH TIx, JFEESHI L ESHORB T, Zhbo
EICERIZFOON o7z, 72, FFESHIZHT
LESHI O EE/IKEOH M=, 3HEHERIZBW
TAERIIRD SN h o7 (Fig 3B).

X512, EE1 D60%BFAILEIC BT 2 E&E/

A 14 B 141
121 _I_ 121
10 101
[0) * (0]
2 87 2 87
© ©
S 61 S 61
X * N
4 41
21 21
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SENERN Y &
s NS
S S & oF &6 oF
& R $ S S

Figure 3. Percentage change in gastrocnemius muscle
weight normalized to body weight following neuromuscular
electrical stimulation training in loading volume-matched
(A) and loading intensity-matched groups (B). 60%FAIL,
60% of maximum isometric torque (MIT) to task failure
at supramaximal voltage (45 V); 30% VM, 30% of MIT
with volume-matched to 60%FAIL; 15%VM, 15% of MIT
with volume-matched to 60%FAIL; 30%FAIL, 30% of MIT
to task failure at supramaximal voltage; 30%1/4V, 30%
of MIT with 1/4 volume of 30%FAIL; 30%1/8V, 30% of
MIT with 1/8 volume of 30%FAIL. Data are means = SE
results from 5—6 rats per group. *P < 0.05 vs. 60%FAIL.

Table 1. Body and gastrocnemius muscle weight following neuromuscular electrical stimulation (ES) training.

GWt (mg) GWt / BWt (mg/g)

Group n BWt (g) non-ES ES non-ES ES
60%F AIL 6 2592 £ 51 11442 = 181 13024 = 36.3* 452 = 0.07 502 = 0.1*
30%VM 6 2750 £ 40 13035 = 17.1 1389.2 = 25.2* 474 = 0.05 506 = 0.1*
15%VM 6 2642 £ 37 12725 = 233 13163 = 22.9™ 482 = 0.05 498 = 0.05™
30%FAIL 6 2417 £ 40 11505 = 225 12210 = 320" 476 = 0.05 505 £ 0.08"
30%1/4V 6 2475 £ 44 12138 = 181 12955 = 8.8° 491 = 0.05 524 = 0.06*
30%1/8V 5 256.0 = 4.0 12176 = 259 12524 = 20.7 476 = 0.03 489 = 0.04

Values are means * SE. n, number of rats; BWt, body weight; GWt, gastrocnemius muscle weight; 60%EFAIL, 60% of maximum
isometric torque (MIT) to task failure at supramaximal voltage (45 V); 30%VM, 30% of MIT with volume-matched to 60%FAIL;
15%VM, 15% of MIT with volume-matched to 60%FAIL; 30%FAIL, 30% of MIT to task failure at supramaximal voltage;
30%1/4V, 30% of MIT with 1/4 volume of 30%FAIL; 30%1/8V, 30% of MIT with 1/8 volume of 30%FAIL. *P < 0.01, **P < 0.001

vs. contralateral non-ES side.
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Table 2. Myofibrillar protein concentration in gastrocnemius
muscles following neuromuscular electrical stimulation (ES)
training.

Myofibrillar protein
concentration (mg/g)

Group n non-ES ES
60%F AIL 6 87.1 = 47 88.1 = 28
30%VM 6 857 = 12 86.2 = 27
15%VM 6 830 = 42 89.7 = 33
30%F AIL 6 88.1 = 44 878 = 54
30%1/4V 6 852 £ 59 86.0 = 4.0
30%1/8V 5 905 = 27 86.7 = 2.7

Values are means * SE. n, number of rats; 60%FAIL, 60% of
maximum isometric torque (MIT) to task failure at
supramaximal voltage (45 V), 30%VM, 30% of MIT with volume-
matched to 60%FAIL; 15%VM, 15% of MIT with volume-
matched to 60%FAIL; 30%FAIL, 30% of MIT to task failure at
supramaximal voltage; 30%1/4V, 30% of MIT with 1/4 volume of
30%F AIL; 30%1/8V, 30% of MIT with 1/8 volume of 30%FAIL.

RE OB, EER 2 D30BFAILEED b DI2EX
EEERL7. F72, EBE1IZBIT 530%VM B,
FEER 2 12 BT B30%BFAILBEOR 550 DRI Y 5
LN, INH2ODOHMICB W THRER/KEOH
MR IIEDO LN ho 7.

3. FRRiRHE 2 D INVEDRE

Table 21 EMME S 87 HOWBEEZR L. &
HIZBWT, JEESHII 3 2 ESH O EME 7 > 3
7 HOREIERIIED SNk o7z,

B

AWFFETIE, DR —E CHRMMRESR L5 3B
L O EMREN—E CHRP R R S 3BEET, Th
SOMBRFEZILKT 52 & T, HIEKIIBIF S AL
MRER L O DROREEZRET L. 2B, $XTOH
I2BWT, JEESHIE ESHIOBT, MEMHES >~ /58y
BN ozl e, BEISNHnER
DML, KRGz &EDOEHROZLITEN
LaWEEZ SN, LAoT, AT, ik
i/ AEOMMEZHIMARE LTHKLE. 20
MR, RO T, BARMBREDES b L —
=7 (60%FAILEE) AMEEFFRED S D (30%VM
HB L OI5%VMEE) 12N, BuHEAREZR L.
CORERE BT B LN, BATMERICBNT, I
R—E OB A, BRI ARAE L LA 7 o %
I OAEED RHEAREY BT s Lo s h
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TWa. $hbb, IhHOMAIE AR IR
KEEZHETDHEVINKDOEZ 2 TFHTLLDOTH
5.

— 75, Mitchell 52 1&, MVC ?30% o 1% i B 1 §)
L 80% DR ER 2, FhFIEFHRET T3y
Yav, BIZ3HTOl0AMAMN L 2 A, KiEE
TEE)T D RS & FREEOMIEKSFE SNE S
LxRL, AMBETIER L, NEFHOEKFE LB
ETHILRRE L BATHIZEICB VT, KA E
B CHIEFWM F CEB AT A2 LT, BIREX N
BEFHALO BRI T 5 2 EHME IR TWDH I &
25V, THAHIRKROBKICHEG LzbDEE L
b5, THITHL, RIFEICBWT, 60%FAILEE
K LR TH 545 V E TR E KR L 7225 30
%BVMEES X OF15% VM BE X, ek Bl 2 % i i
J R T Lz, Lo T, IS DFEOAED,
60%FAILFEICHEARRER R Lz, BIH S N728
TRAHEDELDS, 60%BFAILTEL ) D eh o 72720 TH
L3 LN,

COMICE LT, AWFIEDO0%FAILE B X O
30%FAILAETIE, &5 5 b iK PRl E CHEM % #F
BeL72Z D, WEWICTXTOMBMENST) H X
N7zbDLEZLNLY, TR TL%B, 60%FAIL
FEICBUT B HIERED, 30%FAILEE L b b &2 R
L7 512, 30%FAILEE O HEHD, 60%FAIL
Mo 2ECThozZ b2 EET AL, Mo,
NIV DL LAAMBESHEKOGHIRK T TH
HIENRBEND, COEZEEMITB LI,
mammalian target of rapamycin (ZfGE I N5, Ml
NOMKEZF A 7F MmERiE, WEKNZE A ML X
DFRSVRAF U TEMEAL S 5 2 & A8, mdEHRE s T
uxé“).

F 72, REFZEDKE R, MIT D30% D EAMHRE T T,
WRNFEDL/4% 8 2 2 T IUEHIERFHFT S e w
CEHIRENS. E5I1T, 30%FAILEE & 30% 1/4V B
BLUB0%VMEOHHIKFTIZERN DD SN h o
722 s, 30%1/AVEEO IFEDS, T OBEMREIC
BOTTTIRKOBHERIIE A5 DI 1555 )ik
THholzdbDEEZONDL. COEZZHFHTHED
2, B MZBWT, i —=v 7oty N EH
RLIBEWMESETD, HOMEREIHML 2w
EARENRTWSY.

Holm 5% 1%, 155%MVC D56 EEEE) &2, #IZ 3
v g e o128 MM LRSS, EEET I G
BT, HA26% AT B L 2HHE LTS, —H,
ARIFZEIZBVTE, RAMBEDES ML —=0 7%
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Fhi L 7215% VM EEIC BT, 35% DA AEED &
N7z, MIT®15% 1%, MVCIZH#5 3 5 & 20% 2 T
HHTLEZELTD, RUFFEORIIL, AN HEE
DES ML == 72k, KiREES) & FRRE O
MKDSTHERSND I EERBLTNS, F72, JLATHF
JEIZBWT, ESIC X 2B HA OB B IXIEE IR T
HY, EHEAEIRGICHE SN Z LGS
TWaY, RIS SRS M 4~ O BBE T, B
Mk & L ICHEBRMEOEMARD OB LY, 7,
ZNOEEIE L9 % 5ok B E By R0 0% 57 R A1 2 2 3 E)
ORI R ERARETH L LD, ZhHDOFHR
ZZoL, EShL—=ry ZR@HEKET &R 7
DOEN e TFERERYVELIWNREErDLEEZ LN
5.

fa

KUFZEDRER, ESFL—=r 7 Tlx, hfTlds
CEREDHMERBORFEL BLET LW TFTh 5
CENREENT. L2 oT, EShL—= 7L
X DRRICHEARE T &R T 20121, B
EEHLISMHREPVLETHLEEZOND.
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Neural differences in corticospinal excitability between in-phase and
antiphase movements during bilateral ankle movements

Atsuki Numata”, Junko Tsuchiya?

Tomotaka Suzuki®, Shigeo Tanabe”, Kenichi Sugawara’

, Tsuyoshi Tatemoto”, Ryuji Osawa’,

)

)

Abstract
Objective: Detailed mechanisms underlying neural control of bilateral ankles during repetitive

ankle movements are still unknown. The aim of the present study was to investigate how

the neural properties were different between in-phase and antiphase repetitive bilateral ankle
movements. Methods: Fifteen healthy young adults participated in the study. The participants
performed in-phase (move the bilateral ankle simultaneously) and anti-phase (move the bilateral

ankle alternately) repetitive ankle movements tasks in randomized order. Single or paired
TMS (ISI=2ms, for measuring short intracortical inhibition: SICI) was delivered at hotspot
which both motor-evoked potential (MEP) of the right tibialis anterior muscle (TA) and the
soleus muscle (SOL) were detected in left primary motor cortex, when EMG of right TA were
on-set and off-set condition during ankle movements tasks. Results: In off-set condition, The
MEP amplitude of the SOL during antiphase task was significantly larger than that during in-
phase task. There were no significant differences between tasks in the MEP amplitude of the
SOL at on-set condition and the TA in both conditions, and SICI in both conditions of TA and
SOL. Conclusion: Neural property of the repetitive movement was prominent during antiphase

movement of the ankles. These results suggest that the properties of phase during repetitive

movement of the bilateral lower limbs might be considered in rehabilitative interventions.

Key words: ankle joint, repetitive movement, bilateral coordination, transcranial magnetic
stimulation, motor-evoked potential
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pattern generator : CPG) 2 & % H B4 17 il ) o b
BB A S = ZLDRENTWAEY Y. —J, REF
il 1% 111 > o Wt 5 35 B 1) ) 0D PR 5 208, ot B S g SO
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7RFZRIC & D G ST W AT Y BT ORI
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RO VRERII BT b A MM A LT
Wz ERY, BRy b7 VR MK BREZTEIRAT
TIZBWTHEM - VORI BE O K % 32
D722 EHRE SN, EALEBTKIC X B T
BfEOEZEZRIETL2HDTH 5.

F72ATIRZE D 5, A B o5 RV TS 8
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X3 2 M RCPE S 0 3RS R, 8 I AR B
BUWTTAO R EHFMRAEEHIKT 2320, HEE
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contraction : MVC) & \»o 7238 BREE & D RIZIE DO
BB H 22" PHE SN TwS,. 2 EKICE
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TEENEAT L, S OARDHEICEE R 7 7 —
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s \
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—>
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} time course

Figure 1. Experimental set up for the timing of the TMS pulses at on-set and off-set conditions of TA EMG during

repetitive movements.
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TA %L & U O ERKIIEIE 2 il L 72 1<,
TAYUHE B 46 ¢ (on-set), TAWG B T K (off-set)
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on-set — single-pulse, on-set — paired-pulse, off-set
— single-pulse, off-set — paired-pulse ® 4 4= 4 ® #
AEDLET, av¥a—%7uar 52 (Lab VIEW,
National Instruments) MW TJ ¥ ¥ A {L L%
fTolz. BBSRHORE T s Z 413, TAOFHEMN
WO LAMB L OTHEMOMEE 2B L, G825
KA U 7B 5 % off-set, €Dk EFI2Hx Uik
DOEF % on-set & B L7z, W2 ~ 32 RL
(Figure 1), #Fo/NE R LB EofEL X O
KESDPMEAB TR 572720, FIBEEO % E 38
BB R L7z 4 OREREN TIZFER % @
LTHEBIIZELTEBY, EMTHBs 1 I v 7%
M L9EhtE L 72.

AP E T, LR 4 Stk 2 BN E R T4 5
W50, FHOMSEHE L7z, RERE T, EEjho)E
OB 720, BERE T L2 1 o E
TOTMSHifT 8% L (8 ~10k17), Wizl
S OREERAG6 ~ TsetFEMi L7z, 4 504%%
150, A FEH60M FEEE o TMS JifT % 17 > 7z, #B&Ril 2
%, TR RE ORI OBREIZ O W RO HIE
AT o7z, FEERZE M L CTHAFETRI600 O TMS HifT %
117z,

T/, MREICBTAHIEERSFESETHLI LR
MRS %728, TMSHIEHET D100 msec [ D F 55 L
% (back ground EMG : BEMG) % 3355
(root mean square : RMS) (2 CTHEB L.

5. BAE, MRatiuE

% B BB 2 B W T B M7z controlled MEP,
conditioned MEP itékh 5, 4 FOWPESMm1C, 74+
LN MEPHRIEM D 9 5, HEHEFED 2 f50OHH %
BT M E AL LTSS L, CEF¥MEP IR
MRE %M L7 2B, BA L7727 — 5 1380007
~013% CTdh o7z, 72721, BEHEDH L EMHmEIC,
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T MEP 2SIl % S e h o 728, B X Wpaired-
pulse {238 T conditioned MEP 23] & L7z 22 o 72
% AL UM 2 47 o 72, fHTIE, controlled MEP
T BRI 2 I o0 -39 MEP 4R g il % 35 #8300 72 1 o
fili TBR L 72 MEP ratio & L Tl %z L7z (MEP
ratio = BRI E D F I controlled MEP & H# 3l
ERE D -3 controlled MEP). % 72 SICTIZ DWW T I&ill
TS, FH L 72 conditioned MEP 3R %
*F-¥ controlled MEP#RIEAE TR L CH M L7 (SICI
= F 3 conditioned MEP " - 3 controlled MEP).

TRTOKRIL I + B (ave £ SE) TIRL
72, HH L 72BEMG® ¥ RMSHE, MEP ratio L O°
SICIIZDWT, EBEM THIEDO D 5 tE % 1T -
72, KEHFIIME 11X IBM SPSS statistics (version20),

SPSS inc) ZH\W7z. B, MEtFIAE EAREEIZS%
K& L7z,

fa R

1. 2EOEHFEBEFICHITS
D EEER

Table 112, [FA 74 & W AZAHIZ B 15 5 TA, SOL
DBEMG D F¥HRMSHE %2 7R 3. It D & %t E
OFRER, MEMTAEEZIIRD N o7z (TA
single-pulse on-set: df=10, p=0.07 ; TA single-pulse
off-set: df=8, p=0.23 ; TA paired-pulse on-set: df=10,
p=0.11; TA paired-pulse off-set: df=9, p=0.97 ; SOL
single-pulse on-set: df=10, p=0.37 ; SOL single-pulse
off-set: df=6, p=0.72 ; SOL paired-pulse on-set: df=10,
p=0.80 ; SOL paired-pulse off-set: df=8, p=051). X -
T, TMSIHIZBIF 2 BEMG IR —&MHICE irbh
TWzZ &dTRan.
2. 2EDOEFHREDICH T3 MEPIRIGLED EbE

Figure 212 controlled MEP & {4 % ] %, Figure 3
2, MEP ratio®#§ R Z/R"3. WAMHIZHBIT S TA
MEP ratio i, on-set2%1.12+0.08, off-set %1.26+0.08
Thotz. T/, HAMIZEBT S TA MEP ratiold,

de 8
B =

EAfE (RMS)

Table 1. Back ground EMG of the MEPs recorded 100ms before TMS based on the RMS method from TA and SOL
at on-set and off-set of TA EMG during repetitive movements.

controlled MEP

conditioned MEP

TA SOL TA SOL
on-set off-set on-set off-set on-set off-set on-set off-set
in-phase 039+003 009+001 006001 004001 034+003 009001 0.06=+0.005 0.04=0.005
antiphase 038+0.03 009+001 006001 004001 033003 009001 0.06=+0.005 0.04=0.005

Background EMG RMS (mVrms). ave * SE
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antiphase

discrete in-phase
““‘W@M&Ww

| mv
20ms

TA off-set _Josav
20ms

SOL on-set
_ Josmv
20ms

SOL off-set
—-I 0.5mV
20ms

Figure 2. Typical waveforms of MEPs (superimposed
3 trials) induced by single-pulse TMS from a
representative subject.

TA

A) on-set (n=11) B) off-set (n=9)

MEP ratio

in-phase antiphase in-phase antiphase

C) on-set (n=11) D) off-set (n=7)

MEP ratio

°
°
&

* % :p<0.01

e
°

in-phase antiphase in-phase antiphase

Figure 3. MEP ratio (ave = SE) in the (A) TA on-set,
(B) TA off-set, (C) SOL on-set, (D) SOL off-set. In off-
set condition, The MEP amplitude of the SOL during
antiphase task was significantly larger than that during
in-phase task (D). There were no significant differences
between tasks in the MEP amplitude of the SOL at on-
set condition and the TA in both conditions, and SICI in
both conditions of TA and SOL.

on-set 231.08 +0.06, off-set251.50*x0.16TdH - 7=. X
D B tHEDFER, RER THEEELRD LD
7z (on-set: df=10, p=0.35 ; off-set: df=8, p=0.08). [
MEAHIZ BT %5 SOL MEP ratiold, on-set51.00 = 0.08,
off-set 3116 =019CTH » 7z. F 7z, HMAHIIBIT S
SOL MEP ratio %, on-set2%1.02+0.08, off-set%1.51
024 Th o7z IO D 5 thiE DK R, off-set
BOWTHEM CTAEZEZRYD, AT
XD BEFE K E D7 (on-set: df=10, p=0.73 : off-
set: df=6, p=0.008).

Figure 412, SICIO# R 2R3, FMHIZBIT 5
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B) off-set (n=10)

A) on-set (n=11)

SICI

in-phase antiphase in-phase antiphase

C) on-set (n=13) D) off-set (n=9)

SICI

antiphase

antiphase

in-phase

in-phase

Figure 4. SICI in the (A) TA on-set, (B) TA off-set, (C)
SOL on-set, (D) SOL off-set. As a result of the paired
t-test, there were no significant differences between
tasks.

TA SICIiZ, on-set230.82 =0.02, off-set230.68 + 0.02
Thotlz. Tz, HAMIZBITSTA SICIIZ, on-set
230.78 £0.03, off-set2%065*0.05TH > 72. FHILDH
B tBEDHRER, MEMICHEEEL RO LD -7z (on-
set: df=10, p=0.22 ; off-set: df=9, p=052). [FEfHIZH
7 % SOL SICIiE, on-set2%0.83 =0.02, off-set%30.59
£004Th o7z, F72, HAHIZBIT S SOL SICIIE,
on-set 730.83 +0.03, off-set #3068 0.03T&dH - 7=. X
DB 5 thE DR, REM THEELZRD LD
7z (on-set: df=12, p=0.997 ; off-set: df=8, p=0.069).

<

AWEFE T, A BE 5 o0 ST SRR B 12 BT 5
PARYE % 224t & A 72 B AR O A i 20 B B il s LA
TEIZH- 2 5528 %, TMS &2 W7z MEP Il € % fa 8712
a2 fro/z. TOME, KELEH O off-set DA

BT, WAAHYEOEE) O SOL MEP ratio 2,  [d]
WAITEEBIC T U TR B BEIE R 2307z, 2o

ZEE, THOEEENC BT S, KA oMM HENE
DI B T HFFREZRBT L DELEEZ b

v MO TR AEEE OFEE L L CTHRTRELT, A
7)) v 7 EEAROMNATEDEH TR TH S.
IS OFMERICE L T - FRL XVIZBUT
5CPGOMEHARKEVE ENSEY. AB%ED LS %
JERFT O MBI RN BT, MR JE il
G5 CPG D3z & S 2 B 2N 8§ 2 5
PIEIRHETH L. LaL, IS OO
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NN B 1) 5 MEPHRIEOHIKIZE G- L TWwb D
2h Lt

SOL MEP ratiol\ZBH LT, J&EHEE))E W i T off-
set lIZSOL DIGFE Y — 7 13 X, ROWEMHNDORBT
WIEWEZEZ 5N b, HTGEIAMET LT % KT
TSOL ® MEP#RIEOH K % 8O 72 sl 2w Tid, &
OWIEEE M) -8 & LT, TAIWCH T AEPn
72 WHIE %2 BT 9 SOL O Vi i iG B2 £ 9 MEP %
RO KTH B RENEDNE 2 b7z, off-set DRI
ENTHTAROMEY, TAOWEXWEL 2 HEHEL L, "hE
RO IEENSET L7z Z off set & L7z, ZAud, il
WM Z B CRET AL, TAOWEH 5T
HHIC LA 2 L TMSHI#Z M2z TL ) 20T
Holz. TOHBIAMED TS LEEES X OTRRE
ThsH2, KEBIEHRITIIGREMOE2 RO
Elx, WA EB QR RIEZ R T 2D D EE 2
bz, 72720, TAZRME#EL L7272 SOLIZDWT
BH R BRI TETE LT, SOLDOIGE) % R ICE
WS EOWGESLETH 5.

T, ) —o0WRkE LT, FMVMHIZBT
% bilateral deficit® B4 5:-23% 2 b7z, Thid b
TR BT DS H IR, o Ao
ARG R MEP 55T 2 H L 2487,
Soteropoulos & 1%, 45— M45 MG - 1 =B -
ER =05 D30%MVC HIZ, ZERERICIE L TESE—
B B 5 O MEP JRIE V2 A 5 2 k59 % 786 72 & il
L7z, KBTI, B CRMSEICEZ ED T,
WG ENEBEE 5 2 A2 e o 72 L LJEATHE
ZEIZ BV T30%MVC &\ 9) 5\ I T H R E N D
Z4b & L Chilateral deficit 23E U7z 55, FfZAHO
T JE PR B L2V, A AH & FRER U TR I 2R
ZH U720 E 2 b,

—75, SICIO#ERTIZIREM OEZRD T, Kt
FEDAER A O XKz I [ B D 2 L o AN
WThosz. TOZEIZELTIE, AWETHWE
BhERE TR R 2B B EF O B G- 2K W T REPE Y 2
bz, FBATHIZEL D, —E ) XA Dsignal iZH b
7o M SRR IS B W, I X Y SUSASEAT
9 5% negative asynchrony 254 U, il ] Bk 7 S5 H)
BB T BAEICB W TRV 7 R= 2ANDORT )5
THIENMONTVEY Y S o BB IR
WU BAE L 7oA 2 POEEB)RETH D, HBRE I
13 Beep HIZEHME L CTHEB)T L5 X H)HORL, BRI
WM LHEEOEREZML TV LaL, AFEOH
ROARDBIE, BT R=ZTBAT LS T SRR
BEL XV TORIEH & 2 o 720 geRIEEE kT, HIK
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SHAE 72 E 5 OMEPVLETH AH. Tz, HIEHRE
HEIZDOWT, JATHI9E %2 2 E 1M R E %2 70%
AMT & L, conditioned MEP ®» ¥l 22 L7- E T

EREL7ZZ. LA2L, 9095% AMTZ#Hwi2#HEdH
DWW G EE D §S S ASSICI &S B2 L 72

HetE b E 2 sz

KRWFFEDOFER2 S, BB O Bz B Bk Bk 0 4
LI, EERRISRER R 2 R0 5 2 ] 5 H
Loz, TOZ I, THARENEYHE Lo
A& UCmil e B o SIS EE) 2 17 9 B, EEh AR
RE2EZETLLEEEZREL CWD. BEOHE LD,
FAZEB) #2 E B MEPARIEO B KR, iyt oM
FIVEZIEARE 2 2 MG ShTw Y™ —J,
YR 7 LB 0 B EB) TIZZAL S E L v &3 58
OO BBy, AMRPEMIER 2 S EROER
o RIS Twiv, AfRicBwTd, K
FLEEYHE 2 15HZ 1S — L TB Y, 4, KEHE
LA EEOEF M ORI X B EEOME AL
LEZD.

AKWEDORP L LT, MNEPHFEREHRNTDH
TA %
ML L7272 SOLICET 2 /AN T 5 THo 72
M, SICTICED R S REHFMBO o L XVt
THENPAHTH > 7208, RAEEE) T ORED 729,
controlled MEP @ Z LI )5 U 72 %l BOR E % fH 12 &
% MEPIRIE DM — B WEETH - 728 3% F o 5.
SHOBLEL LT, REREEIIG U2/ EREIE
OAANCBE S B HGER, HRE 2w HL N
TOME, S OHICEBORETRIERZ IR E L
AIBROBE % L2 O T BERH L EER D,
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The effect of scapular kinematics during shoulder elevation
with and without external loading

Abstract
Purpose: The purpose of this study was to investigate the gender characteristics on scapular
kinematics during shoulder three planes of elevation with and without external loading.
Methods: Nine healthy men and 10 healthy women participated in this study. The subjects
performed shoulder flexion, scapular plane elevation, and abduction with and without loading.
An electromagnetic motion capture system was used to analyze scapular orientation, and change
in the scapular orientation from the resting position was calculated. Results: Scapular posterior
tilt with loading significantly decreased compared to that without loading for shoulder flexion
and abduction in men. There was no change in the scapular orientation with or without loading
in women. Women had lower upward rotation and posterior tilt angle with or without loading.
Discussion: This study revealed the gender differences in scapular kinematics during shoulder
elevation with and without loading. In women, the scapular motion was less, and had muscle
activity characteristic which possibility explains why there was no change in the scapular

orientation with loading.

Key words: Scapular motion, 3D analysis, Gender difference, Shoulder elevation, Load
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FEE EoBICIE, BREIE R MEL L OREL,

VBB A TANZIS CNBED L <13 iEs % 2 & 2351
SRTWB™ . F72, HHEOBREIE, AR ER)®
g, B, MXT, EMEPICIo Ty AL
AHE SN TBEY Y bW BT LY X 23—
EOEERE GV ERHLNIIR)22HE7. =
NEcomE i, B MEE)R O 5 4 I 8T
H Y TIEWNIEMEE LRI EAEIEET AL LD
oY JRlh, BREEEL SHEoWwFhoEE T
bEWE L, THbGE WNAMVE iR R
FTrLLEboRALNLY. —FHT, BEHREEEL
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INFETIEHFOHEOMNEZHRE LD DI
BT TH5. Schwartz 55 1, JEEhER B X O
BB OV 2R L, 2 11200 Tl K EIx S
P AREZICHIEL T2 & LTWwb. Habechian
59 0%, % E60°, 90°, 120°12BWT, LHEIZHE
A4 7% &, Nagamatsu b'% 1, J§ ¥ &% 120° ~
110° D RTiE, ZWIZB T EHRTEAESD %05
72 LTwa, 72, I TOMIGENICHET 5
WCXE, BBz EB X OV RSB o M IE A AR
e & T EBRAED % MVCIZBHIERLTIIRE W
ENTWBY, BEZE ok, L3R P oEE) )
BYICHAD % L EEBG ORI RE W &0 5,
FEIER3E PG 2 REET 2720 1ImAGH LTw 2
EOEZ S AL, L, P FESFFICBWOE
Hg 2 OIIEEI CRIET A LENH L% 5, AM T
DEMETH FERICE REOEEIIE LI W A3
ZAoN5.

EHIL, IhFEFTOBRWELG L LW%E T, &
S & > TIRWOEEDN Lo 72 & T 2 WA A
SNTwaY, LBV CILEIEIC L 220
FEFMEF STV AR,

AMFEOHMIE, AR LEAMD D D2 DD5M,
i L, EHEEm, BPEmss L, SR 3
OEB I TOZ LER 21T, HEEOBBICEES
FOEBHICK 2ENHLOPMIEL, BEHO k
Lo Y S EORBN T - T 5L TH B,

2. NREFE

2—1. M¥&

BYE9 % (253 + 327 (P + BEEREA),
HIRI1717 * 6.6cm, K631 + 89kg), KVEI0H (4
#5287 + 694, FIIHK1567 + 45cm, KES25 +
56kg) DEINIKTH 5. HBF L LRI S A ORE
A REERAT, SO LRAEZGL. 2ToMH
BB L R WE L F70, REFFIEHE R
AR P E R ZORBER T o 72 ORBF
17005-060215).

2—2. AlEHIR

JE WG O 3 RITTOFEMNTIIE, st H—v
A7 A (Polhemus#L# LIVERTY, K[E) % Hw7-.
Rt o= AT AL, WMESRmEERAESES b
FUYAIv I —, NELHNEENT Y —La
vho—jax=y bTHEKIN, I ho— L=y
FENS—VFLIrEa—F—ZHHL, &t —
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ONET—4, * 4 F—MA7—% 2RI TE
5dDTH 5. 5fneid, MAE0.00125, £7E0.00381mm,
M, A0SR, f7iE0.76mm, JEHPHIZ b T
A3y ¥ —ORFEAR106cm, ISEHEIX3S5I ) /BT
HY, AR—YRHEFLIT B BEERNTICH VS
NTW3. ZoOFIpE LTIIEMD % < PEFHT 25T
XLZEREITONS.

2—3. BT AL NOEEZERDER

st o=, Wy, BYE, Lhigicehth
15>, B 3R L7z, #eBeg 3 im il < L %
HikZ TR E L, W e m Eigiic, B8RS
&, BIgEORIMINZmIE 7 — 7 TR, B
EARBRECFROT I ATy 7 8A 7 LT 7 X
F—TEHELZ (M1). b7 YA3I v —I3H8RE
DH20em A7 77 Trs X 80cm DALE TARED & F I [#H
E L7, FEMERERE R (global coordinate system) (3,
N UVAI VI —NIIREINTED, £y —0
7= F IR RIIOWTRONL LDOTH D, &
Y7 A v b oOMEE% (local coordinate system, LCS)
1X, International Society of Biomechanics'® 7% 3%
57— OfiET—7 Rk LEHRLE &
TR NDT VR =7 LHEROERIILT O
DTH5.

MWERIX, 4 7 SMEpliZe#e (Spinous process of the
7th cervical vertebra : C7), M4 L# (Suprasternal
notch : SN), £ 8 Ji #E i 22 (Spinous process of
the 8th thoracic vertebra:T8), -5 fll1kz2# (Xiphoid
process : XP) &M\ TWEREREZRE L. Mg
L# (SN) &S E L, YHldwigalReEe (Xp)
& S MERi ek (T8) oW IL & i Ei# (SN),
57 SHMEREZERE (C7) O E A TEHOMER TH
Wz 77 A, Z#d, WELEE (SN) &5 7 Sk
Zeite (C7) &Mgalikzete (XP) &4 8 It pigeit
(T8) D RTINS & Bl 2 TH %
7T A, X, wFELAYH, ZEHZEE LT,
Wz 79 AL L7 (K2A). JBHEFHEERZ, BH
i #B (Triangular surface on the medial border of
the scapula : TS), JEH & F# (Inferior angle of the
scapula : IA), J§ & £ (Acromial angle : AA), %
Az, EEEFEMA (AA) &L, Z8Nd)E PRk
i (TS) LIRS (AA) %A 7K CJIE I J5 1)
77 2E L, XWNIERETMA TA), JH B
(TS), B (AA) O3 HEETLHEAY S OMEBEART
Bii%E 79 A, Y REio Zihe Xo ki< -
Jik7I AL L (M2B). FRiEERE, LREN
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Scapula _ ~_| Sternum
sensor sensor
Humerus b
sensor
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Figure 1:Position of each sensor

Scapula sensor: Fixed to the skin on the superior
acromion process using double-sided tape.

Humerus sensor: Fixed on the back of the distal humerus
with the original thermoplastic cuff and hook-and-loop
fastener.

Sternum sensor: Fixed to the skin on the superior border
of the sternum using double-sided tape.

il 45 (Medial epicondyle:ME), #Mil F¥8 (Lateral
epicondyle : LE), B X O'/8 ¥ I Jiii BE & I8 5E Hr O 1
(Center of glenohumeral rotation : GH) %#ic#kL 7-.
JB& Wb BE i Iml e Hh  (GH) &, BT v R —
7 TR WHS EREE Oftll 2 e 572 DI LETH
2% KBTI, WBREO B R BATEL 2R
TR DSl U 22 255 B OBl E8) 2 17w, B
T EoRER.O M E Uz, J5 N % T8 B _E i B 5 Il e
bl (GH) &L, Y#E, T8 B b b B 3 el e Ao
HO(GH) 75 B4 il R (LE) & Wl R (ME)
O REFEAZRMTEFE 7oA L, XIEF L
g B8 &3 Il e oG i (GH),  ERiEg vl B (LE), W
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Figure 2: Locations of the anatomical landmarks used
for the digitization and establishment of coordinate axes
for each segment.

The illustrations show the landmarks and local coordinate
axes used for the thorax, scapula, and humerus segments,
respectively.

(A): Thorax

(B): Scapula

(C): Humerus

Scapular plane
elevation

Flexion Abduction

Figure 3:Experimental setup.
Upper: Front view of subject.
Lower: Position of force gauge at each elevation task.

NOFH OB % ERE LT, EHHIEEEFDHE
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3). EomEi, BuoPimEROKBRELY, L
B AL (BIGGIEAL) TORTIZON & L, % 1130°



H AR B A T AR

frizBwnCid, B0~ 1INFEE, ZMHid 8 ~9INFE
JECTHEBRENE LR #CF 2 — T ORI ZRE
L7z, 6 MHOMEERIT v ¥ 2 b L, &Khtfriid
WO EEEZE L 20MOKRExR & o7z WEDH]
IR IC B CRVEE R 2 S L, £ ORME %
WHAT - 72, IR O %S 2 %7 L% 1130° 2 BBIT
X559, WEBEORFICHEEZRE, HRVEEZ~Y—
FUrLEMLL. EEORGICITMREITETEX
i1 7.

A B
Posterior tilt(+)

Internal
rotation(+)

External
rotation(-)

Upward
rotation(-)

Figure 4: Definitions for scapular motion

Scapula rotations were defined in accordance with the
recommendations of The International Shoulder Group.
(A): Upward/downward rotation seen in a posterior view
of the right shoulder. (B): Anterior/posterior tilt seen in
a lateral view of the right shoulder. (C): Internal/external
rotation seen in a posterior view of the right shoulder.
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2—5. T2

MET—%, FNTF—BLORIT—F7I1E5
TV ZREEKI20Hz T vy ¥ 2 —% —ICHDAA
720 JERCR 3 %08 5 @ #E B 1X The International
Shoulder Group (ISG) '™ % 3&12, X®li[ElH: o IE H1h]
Z N MGE, Y sl ok & NEE, 7 dliefn o ik
FmEHREERLE (K4)., WIS T2EHGD
FEEIZ, Wub'™ o212 Y-X-Z" sequence %,
JaEBizxr 34 LR o MEIZY-X-Y" sequence % H
WATHIE L 72, F72, ERig o EaEREmas
HH L BB TRWEEERO XY THN, B
g iZs LIE W AR O YZ I, A3 208 1
ROYZHA~DOFEESE M7 D EoMEDFHHIC
1%, MBEIER L 72 Scilab 2 — K (SCILAB55.0) %
vz, Bohz Elia oz EME30°, 60°, 90°,
120° DR HCOEHEOMEL MM L, % LT
Moo DEALEE KD

Fa—TI X EPORIEE, N—vFrary
Ya—& =2 AAZZ HHEESOMEMN L 1 W
T o ERi 2 £30°, 60°, 90°, 120° KE oo fiE %
WMUBE L7z, BAOMEIDEESiE—2X Y P BIO
E— A Y MRERRZRD, ZNEN L2 HER L7,
%3, BHEET— A MIUTORERZ Y.
Z F30° o4
(BB o EE  ARFRED5% x TN © 9.8m/s* %
i 7 — 2 508 e~ BEFg CM BIFf B < )i COM -

Table 1: Scapular anterior/posterior tilt during the elevation of three
types of elevation. + posterior tilt; - anterior tilt. Angles are given

from the resting position of the scapula.

(mean £ SD)(° )

elevation
30° 60° 90° 120°

Flexion

unloaded 25+19 26+32 24+42 52+48
WOmen | vaded 11+16 13+35 16+48 41+57
ey Unloaded 3120 49%30 6849 12360

loaded 21420 36+37 51+63 89+77
Scapular plane
elevation

unloaded 23 +17 28+28 34+36 56+47
WOmen | aded 21+22 24+37 37+36 63+40
e Umloaded 3617 4926 7248 11.7x61

loaded 26+32 37+46 52+67 9681
Abduction

unloaded 36 +17 49+26 72+48 11.7+6.1
WOmeN 1 aded 26+32 37+46 52+67 9681
ey Unloaded 3617 4926 7248 11.7x61

loaded 26+32 37+46 52+67 9681
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1’: significant difference between with and without loads (p < 0.05)

* . significant difference between humeral elevation angle (p < 0.05)

% . significant difference between humeral elevation angle (p < 0.01)

Figure 5: The change in the scapular posterior tilt angle
(mean and SD) during shoulder elevation.

(A) Flexion in women, (B) Flexion in men, (C) Scapular
plane elevation in women, (D) Scapular plane elevation
in men, (E) Abduction in women, (F) Abduction in men.
The graphs show the posterior tilt angle from the resting
position during shoulder elevation for men and women.
The vertical axis shows the posterior (+)/anterior (—) tilt
angle, and the horizontal axis the humeral elevation angle.
(A) There were no main effect and interaction. (B)
Humeral elevation angle had significant main effects (P <
0.01), and there was a significant interaction (P <0.01). (C, D)
Humeral elevation angle had significant main effects (P <
0.05). (E) Humeral elevation angle and load had significant
main effects (P <0.05). (F) Humeral elevation angle (P <0.01)
and load (P<0.05) had significant main effects, and there
was a significant interaction (P <0.05). (Table 1).

L, SHIICEMDICHEM AR LIHE g O®RE
FFEAVNE o7z (KI5E).

BBV TIE, ffif (p<005) B X% MR
(p<001) OFEEERD, T2, ZHAEHZHDT:
(p<005). FHEMEDORR, 258 190°, 120°12BWVT
FhENAMD Y AR LI TEZRAD (WFhd
p<005), Ffid D ITEMAE LICHERICERE%
HMEN D ol B EAEDLE T, ARk
LT3 E30° £90° (p<005), BIUI2000 (p<
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Table 2: Scapular upward/downward rotation during the elevation of
three types of elevation. + downward rotation; - upward rotation. Angles

are given from the resting position of the scapula.

(mean*SD) (°)

elevation
30° 60° 90° 120°
Flexion
unloaded -58 +34 -128+48 -201+56 -276+62
WOmen 1oaded 49+34 -118+51 -186+66 -274+66
1y Unloaded 8824 17523 -266+40 -349x59
loaded 21+20 -171+31 -269+47 -352+6.2
Scapular plane
elevation
unloaded  -47 + 38 -127+40 -200+44 -26.0+5.1
Women 1 oaded 59+58 -115+31 -178+39 -251+50
o, Unloaded -85%18 -182%23 -264+42 -333x69
loaded 65+28 -169+40 -257+56 -33.3+70
Abduction
unloaded -43+37 -117+43 -183+57 -257+586
women oaded 41+24 -111%+29 -175+42 -247+56
rey  Unloaded  -10.4+£32 19640 -27.0+56 -342:* 64
loaded 93+20 -185+26 -261+39 -332+53
0.01), 60° £120° [ (p<0.01),90° £120° M (p<0.01) A B
B RN L e 30 60 90 120 30 60 %0 120
e ﬁ %;;E i’ Eﬂéf), 8 Egﬁﬂ 7—‘}_‘SJ: a:ﬁ:\l NE| @’%‘ﬁ‘{ﬁﬂﬁ L T °7 o Humeral elevation (degree) Humeral elevation (degree)
c g¢
Wi fififdH 0 ICBWw»TiE, 307 £120°H (p<0.01), N
60° £120° [ (p<0.05) \AIEH% A, ALY = ég
[FARRICZE EICHEVE g 2R E L Tz (X5F). T w0
_ C D
3—2. BREBLA-THEREAENEILE (FR2) o 5
a. JiHhEE)RE %g:g,
BrLb, FEAEOTHROARD (Fhbp 58z ®
- “ s — Q3%
<001), A% LICREVERH I EERELTw» g §8
72 BWEROEME BIOKEEREREO S e
o7z (K6AB). E F
§:% \
b. J8 g% s B g8
b, BEAEOFMROABD (WFhbp 3 i
<001), HBE#EZ FIZEWE RS AR L Tw “ % a0

72, AMERNOTEE, LHAEHIZRO SN oz
(6CD).

c. HhmEB)E

Bred, BEAEOTHROAED (WTFhdp
<001), JABIHEiZE EIZHEVIE A& B E LT
720 F7o, BREBICAMEROEME, KHIEHIZ
BOLN o7 (KEEF).

3—2. EREN - MERENEILE (R3)
a. JuiiEE)

56

—O0—: women unloaded —#— : men unloaded

+++0++ : women loaded ++-&++ :men loaded

Figure 6: The change in the scapular upward rotation
angle (mean and SD) during shoulder elevation. (A)
Flexion in women, (B) Flexion in men, (C) Scapular plane
elevation in women, (D) Scapular plane elevation in men,
(E) Abduction in women, (F) Abduction in men. The
graphs show the scapular upward rotation angle from
the resting position during elevation for men and women.
The vertical axis shows the scapular downward (+)/
upward (—) rotation angle, and the horizontal axis the
humeral elevation angle. (A ~ F) Humeral elevation angle
had significant main effects (2 <0.01). (Table 2).



HAERER Pt I MERE 4820 2% (2017)

Table 3: Scapular internal/external rotation during the elevation of three types of elevation.
+ internal rotation; - external rotation. Angles are given from the resting position of the

scapula. (mean*SD) (°)
elevation
30° 60° 90° 120°
Flexion
ey D 6.6+ 1.2 127+22 158427 14.0 2.0
S 55 1.1 106+ 1.9 135+ 1.9 120+ 1.8
. s 010+£001  021+003  025+004  0.23+0.03+
BWratioNmKg) | ien  041+001  021+002  026+003 024 +0.02
Scapular plane elevation
I 6.3+ 1.1 131+£19 161423 139+ 2.1
women 51+12 102+ 1.6 133413 19+19
. o 010+001  021+003  026+003  0.22:+ 003
BWratio NmKg) | nen  0.10£002 0204002  026+001  0.23+0.02
Abduction
moment (v ™" 6.8+ 1.4 129425 159428 141423
oo 54+ 1.0 10.7 £ 1.6 136+ 1.8 123416
. men 010+001  021+003  025+004  0.23+003*
BWratio NmKg) \imen 0414001 0224002  027+002  0.24+0.02

**. Humeral elevation angle had significant main effects (P < 0.01)

i, ERR, KHAEME RO LN R o72)
OO, JFEEZEECHECERSIEAREL W (1K
7A).

G, FEAEOTRREZED (p<0.05), FH
HizE BRI R IENTE L Tz, BRTER O3
K, BIOZEEMIZED SN ah o7z (W7B).

b. J8 W TZE LI

Bl b, FRR BLOLEFEHIZREO SN Rh o
720 F72, RWERNIMER R Z MR L Tw e (1
7CD).

c. AMREE) R

L, ERRBLIOTHEEME DED NN
7o, JEBEIZ B WIE HE I3 AME L Twe (X
7E).

BYEL, FEEAEOEMRERD (p<005), FH
fizs FICHE VIR g 3AM e 525, %8 1120° Tldsbie
PR LTz, T2, KEEHITRD N Lh o7
(H7F).

3—4. BESIE—X> MEEHE (BEHY)

BRI, 2 EAEORKICEWIKPUEA A L C
Wiz (M8). E— XY MEFERIE, JEith, EWE @
% 1, AMEEBI O S TICBWTE FAEO B2 R
W20 (TXTp<001), HHOFEE, BILOKLH
ERIZEED ST, Bk 2 E30° M2 B W TR
i, 190 ICBWTHRAMEARL: (F4).
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Flexion

rotation (degree)
5

Humeral elevation (degree) Humeral elevation (degree)

Scapular internal(+) / external (-)

1

rotation (degree)
o 5

Scapular plane
elevation

rotation (degree)
o

Abduction

Scapular internal(+)/ external (-) ~ Scapular internal(+)/ external (-)

==0—: women unloaded

=& : men unloaded
++«0++ : women loaded +++&-* :men loaded

Figure 7: The change in the scapular internal/ external
rotation angle (mean and SD) during shoulder elevation.
(A) Flexion in women, (B) Flexion in men, (C) Scapular
plane elevation in women, (D) Scapular plane elevation in
men, (E) Abduction in women, (F) Abduction in men. The
graphs show the internal or external rotation angle from
the resting position during shoulder lowering for men
and women. The vertical axis shows the internal (+) or
external (—) rotation angle, and the horizontal axis the
humeral elevation angle. (A, C, D, E) There were no main
effect and interaction. (B, F) Humeral elevation angle had
significant main effects (P <0.05). (Table 3).
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Tension (N)

30 60 90 120
Humeral elevation (degree)

—— Men

e Average for men
........ Women

e == Average for women

Figure 8: The tension values of each subject during
scapular plane elevation and the average by gender.
Thin solid lines, each male subjects; a thick solid line,
average for men. Thin dotted lines, each female subjects;
a thick dotted line, average for women.
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HUEAECY. Zho kb, FEEHEOE RGO
JEBh 1%, Habechian 5, Nagamatsu &' o #15 &
FARIC, ZHEBEICHAD L, T2 KHFEEO
MIEEE O - DRM FICBW T EHEOBREICE
IEBARSNL o/l NN EZOLNDS.

— T, BHICBOWTIIAMICE ZE 5 oBE
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Table 4: The Shoulder joint moment and moment body weight ratio during shoulder

elevation with loading (mean £ SD)
elevation
30° 60° 90° 120°
Flexion
moment vy ™" 6.6+ 1.2 127 +£22 15.8 + 2.7 14.0 2.0
— 55+ 1.1 106+ 1.9 135+ 1.9 120+ 138
. s 010001  021+£003  025+004 023003+
BWratio NmKg) | en  041£001  021+002  026+003 024002
Scapular plane elevation
moment (imy ™" 6.3+ 1.1 131+1.9 16.1+2.3 13.9 + 2.1
ok 51+12 102+16 13.3+1.3 1.9+19
) - 010+£001  021+003  026+003  0.22+0.03%
BWratio NmKg) | en  0.10+£002  020+£002  026+001  023+002
Abduction
B 68+ 1.4 129+ 25 159428 141423
- 54+10 107+16 136+ 1.8 123+16
) wen 010+£001  021+003  025+004  023+0.03*
BWratio NmKE) women 0414001 0224002 0274002 0244002

**; Humeral elevation angle had significant main effects (P < 0.01)
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Effect of hip joint angle on muscle stiffness of adductor longus
during hip flexion task

Daisuke Kikukawa, Keigo TaniguchiZ), Takuya Kato”?, Masaki Katayose”

Abstract

The aim of this study was to examine the effect of hip joint angle on muscle stiffness of the adductor
longus (AL) during hip flexion task. Ten healthy young adults (men) were recruited for this study. To
investigate the effect of hip joint angle on muscle stiffness, shear modulus of AL was measured during
the isometric hip flexion tasks at 0%, 25%, 50%, 75%, and 100% of maximum voluntary contractions
of the hip flexors for each hip flexion joint angle of —20°, 0°, 20°, 40°, 60°, and 80° using ultrasound
shear-wave elastography. The changes in muscle stiffness of AL with the hip flexion tasks were
different between hip joint angles. During hip flexion, a significant interaction of hip joint angle and
contraction intensity on the muscle stiffness of AL was found (P < 0.001) . Active stiffness normalized
to the hip flexion maximal torque at hip flexion angles of —20°, 0° and 20° were significantly higher
than at hip angles of 40°, 60° and 80° (P < 005) . These results demonstrate that muscle stiffness of
AL with hip flexion were influenced by the hip joint angle, and it was higher at the hip angles of —20°
to 20° . The findings suggest that the mechanical stress of AL with hip flexion might be higher in the

extended region and shallow flexion region of hip joint range motion.

Key words: Shear wave elastography, Mechanical properties, Hip adductor muscle, Muscle

stress, Groin pain
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distal <> proximal

Fig. 1. The probe for the adductor longus was placed in
a position between the sartorius and gracilis muscles,
and located muscle fascicles region distal to the
intramuscular tendon. The probe was placed parallel to
the estimated fiber direction.
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Fig. 2. Representative images for shear modulus measurement of muscle belly with ultrasound shear-wave
elastography. The figure shows ultrasound B-mode images of the adductor longus at the -20° (upper panel) and 80° (lower
panel) of hip flexion angles during 0% (a, ¢) and 100% (b, d) of hip flexion maximum voluntary contractions (MVCs),
and color-coded shear modulus distribution within a 15 x 15 mm® regions of interest overlaying each B-mode image. The
scale for the color code is provided to the right as the estimated shear modulus. Stiffer and softer areas were displayed
as red and blue, respectively. The spatial average of shear modulus in a circular area was calculated.
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Fig. 3. The subject was in a supine position on the
seat of BIODEX. The pelvis was fixed to the BIODEX
using a strap. The pad of BIODEX was attached to the
distal position of the thigh on measurement side. The
angle of the knee on the measurement side was varied
in accordance with gravity. The hip flexion angle of the
contralateral side was 0° and knee flexion angle was 90° .
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Fig. 4. Hip adduction torque (% MVC) during hip flexion

at six hip flexion angles. Values are means and standard
deviation. MVC: maximum voluntary contraction.
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Fig. 5. Hip flexion torque at the six hip flextion angles.
Values are means and standard deviation. P < 0.01: vs
80°. TP < 001: vs 60°. P < 0.01: vs 40°. *P < 0.01: vs 20°.
P <001 vs 0° .

Table 1. Hip flexion torque (% MVC) in hip flexion multi-stage trial at the four contraction intensity and six hip flexion

angles.
Hip joint angle % MVC torque
(degree) 25 % 50 % 75 % 100 %
=20 270 = 33 501 = 25 738 = 1.7 9.2 = 2.1
0 259 = 16 491 = 24 726 = 2.8 9.2 = 31
20 249 = 27 484 = 1.8 725 = 25 975 = 34
40 251 = 22 475 = 15 719 = 28 95.7 = 6.8
60 258 = 1.8 489 + 1.8 727 = 20 982 = 51
80 261 = 21 490 = 16 726 + 2.3 975 + 42

Values are means * standard deviation. Hip flexion torque (%MVC) in hip flexion multi-stage trial was normalized from the
torque of hip flexion MVC trial. MVC: maximum voluntary contraction.
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Fig. 6. Relationship between stiffness of adductor longus and contraction intensity at the six hip flexion angles. Values
are means and standard deviation. *P < 0.05: vs 80° TP < 0.05: vs 60° P < 0.05: vs 40° *P < 0.05: vs 20° 'P < 0.05: vs 0° .
Filled circles: —20° ; filled triangles: 0° ; filled rectangles: 20° ; open circles: 40° ; open triangles: 60° ; open rectangles 80°.
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Fig.7. Active stiffness of adductor longus at the six hip
flexion angles. Values are means and standard deviation.
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Fig. 8. Change in the muscle stiffness from rest to MVC
in hip adduction and flexion. Values are means and
standard deviation. P = 0.08.
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