
28

©Kaifukuki Rehabilitation Ward Association 2020

ABSTRACT
Fujita T, Ohashi T, Yamane K, Yamamoto Y, Sone T, 
Ohira Y, Otsuki K, Iokawa K. Relationship between 
the number of samples and the accuracy of the 
prediction model for dressing independence using 
artificial neural networks in stroke patients. Jpn J 
Compr Rehabil Sci 2020; 11: 28‐34.
Objective: To determine the lower limit of the number 
of samples that is useful for creating a prediction 
model on dressing independence in stroke patients by 
using artificial neural networks.
Methods: Five datasets consisting of 120, 100, 80, 60, 
and 40 were created from 121 stroke patients by 
repeated random sampling. The models for predicting 
independent dressing one month after admission were 
created by an artificial neural network and logistic 
regression in each dataset from the variables upon 
admission to the convalescent rehabilitation ward. The 
accuracy of both models was compared.
Results: The accuracy of the artificial neural network 
model was significantly higher than that of the logistic 
regression model in the 120, 100, and 80 patient 
datasets, and there were no differences in the accuracy 
of both models in the 60 and 40 patient datasets.
Conclusion: Our results suggested that the lower limit 
of the number of samples for creating a useful 
prediction model of dressing independence by using 
artificial neural networks is approximately 80.

Key words: stroke, prediction, activities of daily 
living

Introduction

　Stroke is one of the leading causes of long-term 
disability [1]. In rehabilitation, the prognosis of the 
activities of daily living (ADLs) should be predicted to 
set goals, plan interventions, prepare the necessary 
human and physical environments, and promote family 
support. Various reports have investigated different 
ADL prognostic methods; however, the generalization 
of results is often limited [2, 3]. The creation of an ADL 
prediction model in each facility has been shown to 
improve the accuracy of the prediction [4].
　However, the number of usable data is small when 
creating a prediction model at each single facility. 
Fujita et al. [5] examined a method that creates a 
highly accurate ADL prediction model even for small 
samples at each single facility and reported that 
artificial neural networks are useful. They also reported 
that when a prediction model for dressing independence 
was created using 83 samples, the accuracy of the 
artificial neural network model was higher than that of 
logistic regression and decision trees. However, the 
lower limit of the number of samples needed to 
maintain sufficient accuracy of the artificial neural 
network has not been clarified. Thus, we examined the 
relationship between the accuracy of the prediction 
model based on artificial neural networks and the 
number of learning samples to determine the lower 
limit of the number of samples needed to create a 
useful prediction model for dressing independence 
using artificial neural networks.
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Methods

　This was a retrospective observational study that 
collected and analyzed information from the medical 
records of patients. A total of 121 stroke patients who 
were admitted and discharged from the convalescent 
rehabilitation ward of a hospital were recruited into 
this study. The inclusion criteria were follows: (1) 
diagnosis of initial cerebral hemorrhage or cerebral 
infarction, (2) unilateral supratentorial lesion, (3) 
inability to dress independently upon admission (≤5 
points for the FIM® instrument [version 3] [6, 7], 
dressing the upper body, lower body, or both), and (4) 
no missing analysis data described later. This study 
was reviewed and approved by the ethical review 
boards of Kita-Fukushima Medical Center and Tohoku 
Fukushi University (no. 72, RS180601).
　Models that predict whether patients can 
independently dress themselves at one month after 
admission were studied. Dressing independence was 
assessed on the basis of the score in the FIM® 
instrument in dressing the upper body and lower body 
items at one month after admission. The FIM® 
instrument dressing items consist of the upper and 
lower bodies; however, the lower scores of both were 
adopted in this study: ≥6 points indicates independence 
and ≤5 points indicates dependence. The following 
were collected as dependent variables: age [8], 
dressing performance prior to practice [9], trunk 
function [8, 10], visuospatial perception [8], and 
balance [11, 12] upon admission, which have been 
reportedly associated with dressing performance. The 
FIM® instrument score for dressing item was used as 
an index of dressing performance upon admission, the 
Stroke Impairment Assessment Set (SIAS) [13] was 
used as trunk function and visuospatial recognition 
indices, and the Berg balance scale (BBS) [14] as a 
balance index. In addition to these variables, the upper 
limb function on the affected and unaffected sides, 
cognitive function, and poststroke duration, which 
have been reportedly associated with ADL prognosis, 
were also added in this study. The Simple Test for 
Evaluating Hand Function (STEF) [15] was used as an 
index of upper limb function, whereas the revised 
Hasegawa Dementia Scale (HDS-R) [16] was used as 
an index of cognitive function.
　Five datasets of 120, 100, 80, 60, and 40 were created 
from 121 stroke patients by repeated random sampling to 
investigate the relationship between the accuracy and 
number of samples of the prediction model for dressing 
independence created by artificial neural networks. 
Thereafter, the accuracy of the prediction model created 
using each dataset was compared. The accuracy of the 
model created using the artificial neural network was 
examined by comparing it with the model created by 
logistic regression, which is a widely used technique. The 
procedure used for creating a model by using artificial 
neural networks and logistic regression was as follows: 

first, patients were classified into two categories, namely, 
the dressing independent group (FIM® instrument 
dressing item of ≥6 points at one month after admission) 
and the dressing dependent group (FIM® instrument 
dressing item of ≤5 points). Each variable upon admission 
was compared between the groups to select the variables 
to be included in the prediction model in each of the five 
data sets with different numbers of samples. Student’s 
t-test, the chi-square test, and the Mann-Whitney U test 
were used for comparison. Second, the logistic regression 
with stepwise forward selection method (likelihood ratio) 
was performed using the variable upon admission, which 
was significant by comparison between groups, as an 
independent variable and the dressing independence or 
dependence at one month postadmission as a dependent 
variable. The artificial neural network model was a 
hierarchical multilayer perceptron with one intermediate 
layer in this study, whereas the independent variable was 
selected using the logistic regression to create the logistic 
regression and artificial neural network models with the 
same independent variable. To prevent overfitting, the 
ratio between learning and testing samples (used to track 
errors during training) in the artificial neural network was 
set to 9:1. Furthermore, when variables consisting of ≥5 
grade scale (i.e., items except SIAS trunk and visuospatial 
perception) were used as independent variables in the 
artificial neural network, they were included in the model 
after being converted into a four-grade scale based on the 
quartile by considering the number of small samples. In 
models created with multilayer perceptron, the initial 
values for weighting from the input to the intermediate 
layer are randomly determined, and the prediction 
accuracy is dependent on these values. Thus, the initial 
values were reset 10 times, and the model with the highest 
prediction accuracy was used.
　The accuracy of models created using the artificial 
neural network and logistic regression was compared 
by stratified 10-fold cross-validation. The dataset was 
randomly split 10-fold, and the model was created 
using 9 parts of the dataset. The model accuracy was 
verified using the remaining data, and this process was 
repeated 10 times. In this procedure, logistic regression 
with the forced entry method was used to retain the 
independent variables used in the model. In the 10-
fold cross-validation, the classification accuracy, 
sensitivity, specificity, positive predictive value, and 
negative predictive value in the artificial neural 
network and logistic regression models were calculated 
and compared using the Wilcoxon rank sum test. The 
level of significance was set at 5% for all tests, and all 
analyses were performed using SPSS Statistics version 
25 (IBM Corp., Armonk, NY, USA).

Results

　Table 1 shows the attributes, cognitive and physical 
functions, and dressing performance of the patients in 
each dataset. As regards the results of the comparison 
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of the variables between the dressing independence or 
dependence groups upon admission and at one month 
after admission, the differences in all variables on all 
datasets were significant, except for age and STEF on 
the affected side of the 100 patient dataset (Table 2).
　The results of the logistic regression with significant 
variables on the comparison between groups as 

independent variables, BBS, and STEF on the 
unaffected side and SIAS verticality were selected as 
independent variables of the model in the dataset of 
120 patients. BBS and STEF on the unaffected side 
and time poststroke were selected in the dataset 
containing 100 patients, and BBS and HDS-R were 
selected in the dataset of 80 patients. Age, BBS, and 

Table 1. Attributes, physical and cognitive functions, and dressing performance of the study patients in each 
dataset.

Variables Dataset 1
(n = 120)

Dataset 2
(n = 100)

Dataset 3
(n = 80)

Dataset 4
(n = 60)

Dataset 5
(n = 40)

Age, years, mean (SD) 75.2 (12.4) 75.4 (12.6) 75.6 (13.0) 74.8 (13.0) 74.8 (14.3)
Gender, men, n (%) 62 (51.7) 57 (57.0) 43 (53.8) 32 (53.3) 22 (55.0)
Affected side, right, n (%) 56 (46.7) 51 (51.0) 37 (46.3) 25 (41.7) 20 (50.0)
Post-stroke time at admission, days, 

mean (SD) 30.2 (11.7) 29.3 (11.2) 29.4 (11.1) 31.4 (12.0) 28.4 (11.9)

SIAS verticality at admission, points, 
median (IQR) 3 (2‐3) 3 (2‐3) 3 (2‐3) 3 (2‐3) 3 (1‐3)

SIAS abdominal muscle strength at 
admission, points, median (IQR) 2 (1‐2) 2 (1‐2) 2 (0.5‐2) 2 (1‐2) 2 (1‐2)

SIAS visuospatial perception at 
admission, points, median (IQR) 3 (3‐3) 3 (3‐3) 3 (3‐3) 3 (3‐3) 3 (3‐3)

Berg balance scale at admission, 
points, mean (SD) 20.5 (16.8) 21.3 (16.6) 20.3 (17.1) 20.5 (16.6) 21.6 (16.3)

STEF affected side at admission, 
points, mean (SD) 75.1 (21.0) 76.3 (20.6) 75.2 (22.2) 75.7 (20.6) 73.1 (25.4)

STEF unaffected side at admission, 
points, mean (SD) 25.8 (32.8) 27.5 (33.5) 24.5 (32.9) 27.3 (32.8) 31.7 (33.9)

HDS-R at admission, points, mean 
(SD) 19.7 (7.9) 19.5 (7.9) 19.5 (7.9) 20.9 (7.2) 19.6 (7.6)

Dressing performance at admission
FIM® upper body dressing, points, 

median (IQR) 3.0 (1.0‐4.0) 3.0 (1.0‐4.5) 3.0 (1.0‐4.0) 3.0 (1.0‐4.0) 3.0 (1.0‐4.5)

FIM® lower body dressing, points, 
median (IQR) 2.0 (1.0‐4.0) 2.0 (1.0‐4.0) 2.0 (1.0‐4.0) 2.0 (1.0‐4.0) 2.0 (1.0‐5.0)

The lower score on FIM® for dressing 
the upper and lower body, points, 
median (IQR)

2.0 (1.0‐4.0) 2.0 (1.0‐4.0) 2.0 (1.0‐4.0) 2.0 (1.0‐4.0) 2.0 (1.0‐4.0)

Dressing performance at 1-month 
after admission

FIM® upper body dressing, points, 
median (IQR) 5.0 (2.0‐6.0) 5.0 (2.5‐6.0) 5.0 (2.0‐6.0) 4.5 (2.5‐6.0) 5.0 (2.0‐6.0)

FIM® lower body dressing, points, 
median (IQR) 4.0 (2.0‐6.0) 5.0 (2.0‐6.0) 4.0 (2.0‐6.0) 4.5 (2.5‐6.0) 4.5 (2.0‐6.0)

The lower score on FIM® for dressing 
the upper and lower body, points, 
median (IQR)

4.0 (2.0‐6.0) 5.0 (2.0‐6.0) 4.0 (2.0‐6.0) 4.0 (2.0‐6.0) 4.0 (2.0‐6.0)

Independence of upper body dressing, 
n (%) 39 (32.5) 34 (34.0) 26 (32.5) 20 (33.3) 14 (35.0)

Independence of lower body dressing, 
n (%) 37 (30.8) 32 (32.0) 24 (30.0) 19 (31.7) 12 (30.0)

Independence of both upper and 
lower body dressing, n (%) 37 (30.8) 32 (32.0) 24 (30.0) 19 (31.7) 12 (30.0)

Abbreviations: SIAS, stroke impairment assessment set; HDS-R, revised Hasegawa’s dementia scale; STEF, 
simple test for evaluating hand function.
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STEF on the unaffected side were selected in the 
dataset of 60 patients, and BBS and STEF on the 
unaffected side were selected in the dataset of 40 
patients.
　When comparing the accuracy of the created artificial 
neural network and the logistic regression model in the 
datasets of 120, 100, and 80 patients, the artificial neural 
network model exceeded the logistic regression model 
in terms of classification accuracy, sensitivity, specificity, 
positive predictive value, and negative predictive value. 

The differences in classification accuracy, sensitivity, 
and negative predictive value were significant in the 
dataset of 120 patients, the differences in positive 
predictive value were significant in the dataset of 100 
patients, and the differences in classification accuracy 
were significant in the dataset of 80 patients (Table 3). 
However, the difference between the accuracy of the 
artificial neural network and the logistic regression 
model was not significant in the datasets containing 40 
and 60 patients.

Table 2. Variables with significant differences when comparing dressing independent and dependent groups at 1 
month after admission.

Variables at admission

n=120 Age, Poststroke time at admission, FIM® dressing, SIAS verticality, SIAS abdominal muscle 
strength, SIAS visuospatial perception, Berg balance scale, STEF affected side, STEF unaffected 
side, HDS-R

n=100 Post-stroke time at admission, FIM® dressing, SIAS verticality, SIAS abdominal muscle strength, 
SIAS visuospatial perception, Berg balance scale, STEF unaffected side, HDS-R

n=80 Age, Poststroke time at admission, FIM® dressing, SIAS verticality, SIAS abdominal muscle 
strength, SIAS visuospatial perception, Berg balance scale, STEF affected side, STEF unaffected 
side, HDS-R

n=60 Age, Poststroke time at admission, FIM® dressing, SIAS verticality, SIAS abdominal muscle 
strength, SIAS visuospatial perception, Berg balance scale, STEF affected side, STEF unaffected 
side, HDS-R

n=40 Age, Poststroke time at admission, FIM® dressing, SIAS verticality, SIAS abdominal muscle 
strength, SIAS visuospatial perception, Berg balance scale, STEF affected side, STEF unaffected 
side, HDS-R

Abbreviations: SIAS, stroke impairment assessment set; HDS-R, revised Hasegawa’s dementia scale; STEF, 
simple test for evaluating hand function.

Table 3. Comparison of the performance of artificial neural network and logistic regression models.

Accuracy (%) PPV (%) NPV (%) Sensitivity (%) Specificity (%)

n=120 ANNa 88.3 83.2 91.7 81.7 91.4
LRa 80.0 72.7 85.4 65.8 86.7

n=100 ANNb 84.0 82.2 86.9 68.3 91.0
LRb 75.0 65.8 80.5 56.7 83.6

n=80 ANNc 85.0 86.7 85.9 63.3 94.3
LRc 73.8 69.7 82.8 56.7 82.7

n=60 ANNd 83.3 80.0 89.0 75.0 88.5
LRd 80.0 73.3 87.5 70.0 86.0

n=40 ANNe 90.0 83.3 100.0 100.0 86.7
LRe 82.5 85.4 88.3 70.0 90.0

*p < 0.05.
Abbreviations: ANN, artificial neural network; LR, logistic regression; PPV, positive-predictive value; NPV, 
negative-predictive value.
aModels created by SIAS verticality, Berg balance scale, and STEF on unaffected side.
bModels created by time poststroke, Berg balance scale, and STEF on unaffected side.
cModels created by Berg balance scale and revised Hasegawa’s dementia scale.
dModels created by age, Berg balance scale, and STEF on unaffected side.
eModels created by Berg balance scale, and STEF on unaffected side.

＊ ＊ ＊

＊

＊
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Discussion

　In medical practice, many studies have created 
various prediction models by using artificial neural 
networks and have compared their accuracy with 
logistic regression models. Although some reports 
demonstrated no difference in prediction performance 
between artificial neural networks and logistic 
regression models [17‐22], many others concluded that 
artificial neural networks are superior [23‐31]. In recent 
years, a systematic review and meta-analysis on the 
outcomes of trauma patients [32] also reported that 
artificial neural network models have better performance 
than logistic regression. Furthermore, the authors 
reported that even in a small sample of 83 patients, 
artificial neural networks successfully created models 
with higher prediction accuracy than logistic regression 
in terms of predicting the dressing independence of 
stroke patients [5]. By contrast, no studies have verified 
the difference in accuracy between artificial neural 
networks and logistic regression by changing the 
number of samples, and only a few reports used a small 
number of samples (i.e., 100). Therefore, the lower 
limit on the number of samples needed to create a useful 
prediction model by using artificial neural networks is 
unknown.
　Our results suggested that the lower limit on the 
number of samples to create a useful prediction model 
for dressing independence when using artificial neural 
networks is approximately 80 and that the advantage 
may be lost if the number of samples is <60. In a sample 
of approximately 80 patients, the artificial neural 
network successfully created a model with higher 
accuracy than logistic regression; this is consistent with 
the result of a previous study [5]. In the dataset of 100 
patients, the difference in the classification accuracy 
between the artificial neural network and logistic 
regression was not significant compared with that in the 
datasets of 120 and 80 patients; however, the artificial 
neural network exceeded the logistic regression in all 
positive predictive values, negative predictive values, 
sensitivities, and specificities. Sensitivity and specificity 
or the positive and negative predictive values are in a 
tradeoff relationship; therefore, if only one of them is 
high, it does not mean that the prediction accuracy is 
superior. However, in the dataset of 100 patients, all 
sensitivities, specificities, positive predictive values, 
and negative predictive values of artificial neural 
networks were higher than those of the logistic 
regression, in addition to the significant differences 
observed in the positive predictive value. Therefore, we 
believe that the prediction accuracy of the artificial 
neural network model was also higher than that of the 
logistic regression even in the dataset of 100 patients. 
The artificial neural network exceeded all of the 
classification accuracy, positive predictive value, 
negative predictive value, sensitivity, and specificity in 
the dataset of 60 patients; however, the values of both 

were very similar and there was no significant difference. 
We found no difference in accuracy between the two 
models in the dataset of 60 patients.
　In this study, the dressing performance of the upper 
and lower bodies was comprehensively addressed 
because we believe that the ability of stroke patients to 
perform a series of dressing activities without 
monitoring or assistance should be carefully monitored. 
However, the results of the FIM® instrument of the 
upper and lower body items showed that the lower body 
scored slightly lower than the upper body. This means 
that whether a series of dressing activities can be 
performed independently depends largely on whether 
the lower body can be independently dressed. Therefore, 
the results of this study may strongly reflect the 
performance of lower body dressing.
　The findings of this study will be useful in the 
creation of a unique model that predicts the dressing 
independence at a single facility in a rehabilitation 
center. In other words, when creating a prediction 
model for dressing independence at a single facility 
with >80 samples, an artificial neural network should 
be used to improve the prediction accuracy. If the 
number of samples is ≤60, logistic regression can be 
expected to create a model with the same accuracy as 
an artificial neural network. Future studies should 
verify whether the results differ when performing 
separate analyses between the upper and lower bodies. 
Although this study focused on dressing independence, 
whether the same result can be obtained with another 
ADL should be confirmed. Furthermore, whether the 
same results can be obtained with data from other 
facilities should also be confirmed to examine the 
influence of changing the independent variables of the 
model.
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