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ABSTRACT

Fujita T, Ohashi T, Yamane K, Yamamoto Y, Sone T,
Ohira Y, Otsuki K, Iokawa K. Relationship between
the number of samples and the accuracy of the
prediction model for dressing independence using
artificial neural networks in stroke patients. Jpn J
Compr Rehabil Sci 2020; 11: 28-34.

Objective: To determine the lower limit of the number
of samples that is useful for creating a prediction
model on dressing independence in stroke patients by
using artificial neural networks.

Methods: Five datasets consisting of 120, 100, 80, 60,
and 40 were created from 121 stroke patients by
repeated random sampling. The models for predicting
independent dressing one month after admission were
created by an artificial neural network and logistic
regression in each dataset from the variables upon
admission to the convalescent rehabilitation ward. The
accuracy of both models was compared.

Results: The accuracy of the artificial neural network
model was significantly higher than that of the logistic
regression model in the 120, 100, and 80 patient
datasets, and there were no differences in the accuracy
of both models in the 60 and 40 patient datasets.
Conclusion: Our results suggested that the lower limit
of the number of samples for creating a useful
prediction model of dressing independence by using
artificial neural networks is approximately 80.
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Introduction

Stroke is one of the leading causes of long-term
disability [1]. In rehabilitation, the prognosis of the
activities of daily living (ADLs) should be predicted to
set goals, plan interventions, prepare the necessary
human and physical environments, and promote family
support. Various reports have investigated different
ADL prognostic methods; however, the generalization
of results is often limited [2, 3]. The creation of an ADL
prediction model in each facility has been shown to
improve the accuracy of the prediction [4].

However, the number of usable data is small when
creating a prediction model at each single facility.
Fujita et al. [5] examined a method that creates a
highly accurate ADL prediction model even for small
samples at each single facility and reported that
artificial neural networks are useful. They also reported
that when a prediction model for dressing independence
was created using 83 samples, the accuracy of the
artificial neural network model was higher than that of
logistic regression and decision trees. However, the
lower limit of the number of samples needed to
maintain sufficient accuracy of the artificial neural
network has not been clarified. Thus, we examined the
relationship between the accuracy of the prediction
model based on artificial neural networks and the
number of learning samples to determine the lower
limit of the number of samples needed to create a
useful prediction model for dressing independence
using artificial neural networks.
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Methods

This was a retrospective observational study that
collected and analyzed information from the medical
records of patients. A total of 121 stroke patients who
were admitted and discharged from the convalescent
rehabilitation ward of a hospital were recruited into
this study. The inclusion criteria were follows: (1)
diagnosis of initial cerebral hemorrhage or cerebral
infarction, (2) unilateral supratentorial lesion, (3)
inability to dress independently upon admission (<5
points for the FIM® instrument [version 3] [6, 7],
dressing the upper body, lower body, or both), and (4)
no missing analysis data described later. This study
was reviewed and approved by the ethical review
boards of Kita-Fukushima Medical Center and Tohoku
Fukushi University (no. 72, RS180601).

Models that predict whether patients can
independently dress themselves at one month after
admission were studied. Dressing independence was
assessed on the basis of the score in the FIM®
instrument in dressing the upper body and lower body
items at one month after admission. The FIM®
instrument dressing items consist of the upper and
lower bodies; however, the lower scores of both were
adopted in this study: >6 points indicates independence
and <5 points indicates dependence. The following
were collected as dependent variables: age [8],
dressing performance prior to practice [9], trunk
function [8, 10], visuospatial perception [8], and
balance [11, 12] upon admission, which have been
reportedly associated with dressing performance. The
FIM® instrument score for dressing item was used as
an index of dressing performance upon admission, the
Stroke Impairment Assessment Set (SIAS) [13] was
used as trunk function and visuospatial recognition
indices, and the Berg balance scale (BBS) [14] as a
balance index. In addition to these variables, the upper
limb function on the affected and unaffected sides,
cognitive function, and poststroke duration, which
have been reportedly associated with ADL prognosis,
were also added in this study. The Simple Test for
Evaluating Hand Function (STEF) [15] was used as an
index of upper limb function, whereas the revised
Hasegawa Dementia Scale (HDS-R) [16] was used as
an index of cognitive function.

Five datasets of 120, 100, 80, 60, and 40 were created
from 121 stroke patients by repeated random sampling to
investigate the relationship between the accuracy and
number of samples of the prediction model for dressing
independence created by artificial neural networks.
Thereafter, the accuracy of the prediction model created
using each dataset was compared. The accuracy of the
model created using the artificial neural network was
examined by comparing it with the model created by
logistic regression, which is a widely used technique. The
procedure used for creating a model by using artificial
neural networks and logistic regression was as follows:

first, patients were classified into two categories, namely,
the dressing independent group (FIM® instrument
dressing item of >6 points at one month after admission)
and the dressing dependent group (FIM® instrument
dressing item of <5 points). Each variable upon admission
was compared between the groups to select the variables
to be included in the prediction model in each of the five
data sets with different numbers of samples. Student’s
t-test, the chi-square test, and the Mann-Whitney U test
were used for comparison. Second, the logistic regression
with stepwise forward selection method (likelihood ratio)
was performed using the variable upon admission, which
was significant by comparison between groups, as an
independent variable and the dressing independence or
dependence at one month postadmission as a dependent
variable. The artificial neural network model was a
hierarchical multilayer perceptron with one intermediate
layer in this study, whereas the independent variable was
selected using the logistic regression to create the logistic
regression and artificial neural network models with the
same independent variable. To prevent overfitting, the
ratio between learning and testing samples (used to track
errors during training) in the artificial neural network was
set to 9:1. Furthermore, when variables consisting of >5
grade scale (i.e., items except SIAS trunk and visuospatial
perception) were used as independent variables in the
artificial neural network, they were included in the model
after being converted into a four-grade scale based on the
quartile by considering the number of small samples. In
models created with multilayer perceptron, the initial
values for weighting from the input to the intermediate
layer are randomly determined, and the prediction
accuracy is dependent on these values. Thus, the initial
values were reset 10 times, and the model with the highest
prediction accuracy was used.

The accuracy of models created using the artificial
neural network and logistic regression was compared
by stratified 10-fold cross-validation. The dataset was
randomly split 10-fold, and the model was created
using 9 parts of the dataset. The model accuracy was
verified using the remaining data, and this process was
repeated 10 times. In this procedure, logistic regression
with the forced entry method was used to retain the
independent variables used in the model. In the 10-
fold cross-validation, the -classification accuracy,
sensitivity, specificity, positive predictive value, and
negative predictive value in the artificial neural
network and logistic regression models were calculated
and compared using the Wilcoxon rank sum test. The
level of significance was set at 5% for all tests, and all
analyses were performed using SPSS Statistics version
25 (IBM Corp., Armonk, NY, USA).

Results
Table 1 shows the attributes, cognitive and physical

functions, and dressing performance of the patients in
each dataset. As regards the results of the comparison
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Table 1. Attributes, physical and cognitive functions, and dressing performance of the study patients in each

dataset.
Variables Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5
(n=120) (n=100) (n=80) (n=160) (n=40)
Age, years, mean (SD) 752 (12.4) 754(12.6) 75.6(13.0) 74.8(13.0) 74.8(14.3)
Gender, men, n (%) 62 (51.7) 57 (57.0) 43 (53.8) 32 (53.3) 22 (55.0)
Affected side, right, n (%) 56 (46.7) 51 (51.0) 37 (46.3) 25 (41.7) 20 (50.0)
Post-stroke time at admission, days,
mean (SD) 302 (11.7) 293 (11.2) 294 (11.1) 31.4(12.0) 28.4(11.9)
SIAS verticality at admission, points, B B B B B
median (IQR) 3(2-3) 3(2-3) 3(2-3) 3 (2-3) 3(1-3)
SIAS abdominal muscle strength at
admission, points, median (IQR) 2(1-2) 2(1-2) 2(0.52) 2(1=2) 2(1=2)
SIAS visuospatial perception at B B B B B
admission, points, median (IQR) 363 3673 363 363 363
Berg balance scale at admission,
points, mean (SD) 20.5(16.8) 21.3(16.6) 20.3(17.1) 20.5(16.6) 21.6(16.3)
STEF affected side at admission,
points, mean (SD) 75.1 (21.0) 763 (20.6) 75.2(22.2) 75.7(20.6) 73.1(25.4)
STEF unaffected side at admission,
points, mean (SD) 25.8(32.8) 27.5(33.5) 245(329) 273(32.8) 31.7(33.9)
H]?SS;; at admission, points, mean 14559 195(79)  195(7.9)  209(72)  19.6(7.6)
Dressing performance at admission
FIM® upper body dressing, points, § 5 5 i i
median (IQR) 3.0 (1.0-4.0) 3.0(1.0-4.5) 3.0(1.0-4.0) 3.0(1.0-4.0) 3.0(1.0-4.5)
FIM® lower body dressing, points, 5 5 5 i ~
median (IQR) 2.0 (1.0-4.0) 2.0(1.0-4.0) 2.0(1.0-4.0) 2.0(1.0-4.0) 2.0(1.0-5.0)
The lower score on FIM® for dressing
the upper and lower body, points, 2.0 (1.0-4.0) 2.0 (1.0-4.0) 2.0 (1.0-4.0) 2.0(1.0-4.0) 2.0 (1.0-4.0)
median (IQR)
Dressing performance at 1-month
after admission
FIM® upper body dressing, points, 5 _ i B 5
median (IQR) 5.0 (2.0-6.0) 5.0 (2.5-6.0) 5.0(2.0-6.0) 4.5(2.5-6.0) 5.0(2.0-6.0)
FIM® lower body dressing, points, 8 8 5 B i
median (IQR) 4.0 (2.0-6.0) 5.0 (2.0-6.0) 4.0(2.0-6.0) 4.5(2.5-6.0) 4.5(2.0-6.0)
The lower score on FIM® for dressing
the upper and lower body, points, 4.0 (2.0-6.0) 5.0 (2.0-6.0) 4.0 (2.0-6.0) 4.0 (2.0-6.0) 4.0 (2.0-6.0)
median (IQR)
Inieg;r;dence ofupperbodydressing, 39 35 343400  26(325)  20(333)  14(35.0)
0o
In‘:f?;‘;dence oflowerbodydressing, 47 3500 33320) 24(300) 19317 12(30.0)
0o
Independence of both ‘upper and 5, 3,00 35320y 24(300) 19317  12(30.0)

lower body dressing, 7 (%)

Abbreviations: SIAS, stroke impairment assessment

simple test for evaluating hand function.

set; HDS-R, revised Hasegawa’s dementia scale; STEF,

of the variables between the dressing independence or
dependence groups upon admission and at one month
after admission, the differences in all variables on all
datasets were significant, except for age and STEF on
the affected side of the 100 patient dataset (Table 2).
The results of the logistic regression with significant
variables on the comparison between groups as
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independent variables, BBS, and STEF on the
unaffected side and SIAS verticality were selected as
independent variables of the model in the dataset of
120 patients. BBS and STEF on the unaffected side
and time poststroke were selected in the dataset
containing 100 patients, and BBS and HDS-R were
selected in the dataset of 80 patients. Age, BBS, and
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Table 2. Variables with significant differences when comparing dressing independent and dependent groups at 1
month after admission.

Variables at admission

n=120

Age, Poststroke time at admission, FIM® dressing, SIAS verticality, SIAS abdominal muscle
strength, SIAS visuospatial perception, Berg balance scale, STEF affected side, STEF unaffected
side, HDS-R

n=100

Post-stroke time at admission, FIM® dressing, SIAS verticality, SIAS abdominal muscle strength,
STAS visuospatial perception, Berg balance scale, STEF unaffected side, HDS-R

n=80

Age, Poststroke time at admission, FIM® dressing, SIAS verticality, SIAS abdominal muscle
strength, SIAS visuospatial perception, Berg balance scale, STEF affected side, STEF unaffected
side, HDS-R

n=60

Age, Poststroke time at admission, FIM® dressing, SIAS verticality, SIAS abdominal muscle
strength, SIAS visuospatial perception, Berg balance scale, STEF affected side, STEF unaffected
side, HDS-R

n=40

Age, Poststroke time at admission, FIM® dressing, SIAS verticality, SIAS abdominal muscle
strength, SIAS visuospatial perception, Berg balance scale, STEF affected side, STEF unaffected
side, HDS-R

Abbreviations: SIAS, stroke impairment assessment set; HDS-R, revised Hasegawa’s dementia scale; STEF,
simple test for evaluating hand function.

Table 3. Comparison of the performance of artificial neural network and logistic regression models.

Accuracy (%) PPV (%) NPV (%) Sensitivity (%) Specificity (%)

n=120 ANN? 88.3 83.2 91.7 81.7 914

LR® 800 1% 72.7 §5.4 1% 65.8 86.7
n=100 ANNP 84.0 82.2 ]* 86.9 68.3 91.0

LR® 75.0 65.8 80.5 56.7 83.6
n=80 ANN® 85.0 ]* 86.7 85.9 63.3 94.3

LRe 73.8 69.7 82.8 56.7 82.7
n=60 ANN¢ 83.3 80.0 89.0 75.0 88.5

LR¢ 80.0 73.3 87.5 70.0 86.0
n=40 ANNe® 90.0 83.3 100.0 100.0 86.7

LRe 82.5 85.4 88.3 70.0 90.0
*p < 0.05.

Abbreviations: ANN, artificial neural network; LR, logistic regression; PPV, positive-predictive value; NPV,
negative-predictive value.

“Models created by SIAS verticality, Berg balance scale, and STEF on unaffected side.

®Models created by time poststroke, Berg balance scale, and STEF on unaffected side.

‘Models created by Berg balance scale and revised Hasegawa’s dementia scale.

dModels created by age, Berg balance scale, and STEF on unaffected side.

*Models created by Berg balance scale, and STEF on unaffected side.

STEF on the unaffected side were selected in the
dataset of 60 patients, and BBS and STEF on the
unaffected side were selected in the dataset of 40
patients.

When comparing the accuracy of the created artificial
neural network and the logistic regression model in the
datasets of 120, 100, and 80 patients, the artificial neural
network model exceeded the logistic regression model
interms of classification accuracy, sensitivity, specificity,
positive predictive value, and negative predictive value.

The differences in classification accuracy, sensitivity,
and negative predictive value were significant in the
dataset of 120 patients, the differences in positive
predictive value were significant in the dataset of 100
patients, and the differences in classification accuracy
were significant in the dataset of 80 patients (Table 3).
However, the difference between the accuracy of the
artificial neural network and the logistic regression
model was not significant in the datasets containing 40
and 60 patients.
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Discussion

In medical practice, many studies have created
various prediction models by using artificial neural
networks and have compared their accuracy with
logistic regression models. Although some reports
demonstrated no difference in prediction performance
between artificial neural networks and logistic
regression models [17-22], many others concluded that
artificial neural networks are superior [23-31]. In recent
years, a systematic review and meta-analysis on the
outcomes of trauma patients [32] also reported that
artificial neural network models have better performance
than logistic regression. Furthermore, the authors
reported that even in a small sample of 83 patients,
artificial neural networks successfully created models
with higher prediction accuracy than logistic regression
in terms of predicting the dressing independence of
stroke patients [5]. By contrast, no studies have verified
the difference in accuracy between artificial neural
networks and logistic regression by changing the
number of samples, and only a few reports used a small
number of samples (i.e., 100). Therefore, the lower
limit on the number of samples needed to create a useful
prediction model by using artificial neural networks is
unknown.

Our results suggested that the lower limit on the
number of samples to create a useful prediction model
for dressing independence when using artificial neural
networks is approximately 80 and that the advantage
may be lost if the number of samples is <60. In a sample
of approximately 80 patients, the artificial neural
network successfully created a model with higher
accuracy than logistic regression; this is consistent with
the result of a previous study [5]. In the dataset of 100
patients, the difference in the classification accuracy
between the artificial neural network and logistic
regression was not significant compared with that in the
datasets of 120 and 80 patients; however, the artificial
neural network exceeded the logistic regression in all
positive predictive values, negative predictive values,
sensitivities, and specificities. Sensitivity and specificity
or the positive and negative predictive values are in a
tradeoff relationship; therefore, if only one of them is
high, it does not mean that the prediction accuracy is
superior. However, in the dataset of 100 patients, all
sensitivities, specificities, positive predictive values,
and negative predictive values of artificial neural
networks were higher than those of the logistic
regression, in addition to the significant differences
observed in the positive predictive value. Therefore, we
believe that the prediction accuracy of the artificial
neural network model was also higher than that of the
logistic regression even in the dataset of 100 patients.
The artificial neural network exceeded all of the
classification accuracy, positive predictive value,
negative predictive value, sensitivity, and specificity in
the dataset of 60 patients; however, the values of both
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were very similar and there was no significant difference.
We found no difference in accuracy between the two
models in the dataset of 60 patients.

In this study, the dressing performance of the upper
and lower bodies was comprehensively addressed
because we believe that the ability of stroke patients to
perform a series of dressing activities without
monitoring or assistance should be carefully monitored.
However, the results of the FIM® instrument of the
upper and lower body items showed that the lower body
scored slightly lower than the upper body. This means
that whether a series of dressing activities can be
performed independently depends largely on whether
the lower body can be independently dressed. Therefore,
the results of this study may strongly reflect the
performance of lower body dressing.

The findings of this study will be useful in the
creation of a unique model that predicts the dressing
independence at a single facility in a rehabilitation
center. In other words, when creating a prediction
model for dressing independence at a single facility
with >80 samples, an artificial neural network should
be used to improve the prediction accuracy. If the
number of samples is <60, logistic regression can be
expected to create a model with the same accuracy as
an artificial neural network. Future studies should
verify whether the results differ when performing
separate analyses between the upper and lower bodies.
Although this study focused on dressing independence,
whether the same result can be obtained with another
ADL should be confirmed. Furthermore, whether the
same results can be obtained with data from other
facilities should also be confirmed to examine the
influence of changing the independent variables of the
model.
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