

HELICS指針であるMFERの解説

小林 聡

フクダ電子(株) 開発本部第1開発部

2021年11月21日 第41回 医療情報学連合大会 HELICSチュートリアル 名古屋国際会議場

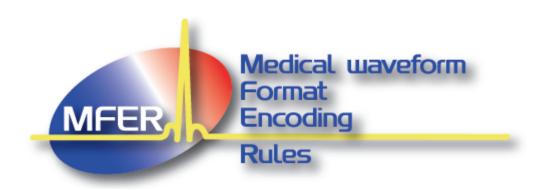
第41回医療情報学連合大会 COI 開示

演題名:HELICS指針であるMFERの解説

筆頭演者名:小林 聡

私が発表する今回の演題について 開示すべきCOIはありません。

HELICS指針でのMFERの位置づけ


厚生労働省標準規格 (2021年4月現在)

規格の分類		規格名称
交換規格	HS028	ISO 22077-1:2015保健医療情報 - 医用波形フォーマットーパート1:符号化規則

規格の説明

本規格(以下 MFER と呼ぶ)は、心電図、呼吸波形、脳波などそれら全ての医用波形を統合的に記述できるものであり、かつ臨床現場から治験、研究、教育目的に広く利用することができる。

MFERは、医用波形に特化しており総合的な標準ではない。つまり、用途ごとに他の優れた標準やソフトウェアと共に利用することが推奨されている。たとえばメッセージ交換では HL7、心カテ室ではDICOM、生理検査報告書では CDA、データベース構築に当たっては RDBMSソフトウェア、WEB利用や通信においては、それぞれの標準と共に利用することを推奨している。

医用波形標準規約MFERとは

Medical waveform Format Encoding Rules

世界中でどのような標準があるか

- HL7 (Health Level Seven)
 - □ 文字による波形表現
- DICOM (Digital Imaging and COmmunications in Medicine)
 - □ 心力テ領域での波形
- SCP-ECG

(Standard Communication Protocol computer assisted electrocardiography)

- □ 標準12誘導心電図 所見
- ISHNE (International Society for Holter and Noninvasive Electrocardiology)
 - □ ホルター心電図
- EDF, EDF+ (European Data Format)
 - □ 脳波等の基礎研究に用いられてきたEDF,多目的使用への拡張ファイル 交換
- X73 (IEEE1073, IS11073)
 - □ ICU等で利用される医療機器の通信標準規格,特に実時間領域での波形
- ASTM E1467-94

(Standard Specificication for Transferring Digital Neurophysiological Data Between Independent Computer System)

□ HL7の前身となる文字列記述による脳波のための規格

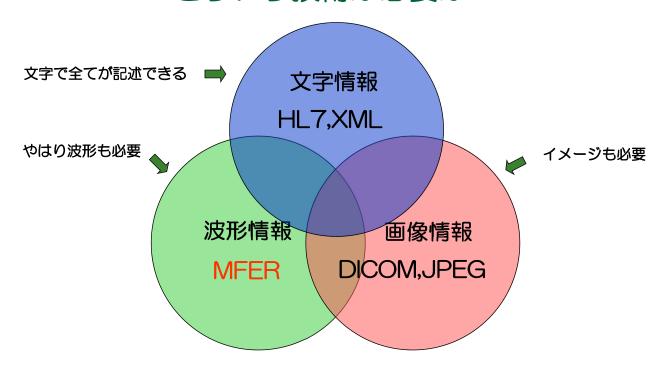
どんな問題点・障害がある?

- 規格が複雑
 - □ 利用するためには規格を学習しなければならない
- 限られた波形,利用
 - 12誘導心電図標準は12誘導心電図しか使えない
 - 脳波は脳波にしか適用できない
 - 実時間規格はモニタにしか使えない
- 実証、再利用が困難
 - 記述したデータが正しいかどうか検証が大変
 - こ そのプロジェクトしか利用が出来ない。他のメンバーはあらためてデータを 収集
- 公開性,排他性,特殊性
 - □ 他の規格との併用が難しい
 - 新しい技術に対応が出来ない
- 専門知識が必須
 - 生理学(e.g. 心電図学)等の基本医学知識
 - □ 電気回路などのハードウェア技術知識
 - 信号処理
 - □ 表示, 記録
 - コンピュータ

では、それぞれの立場を分離できないか

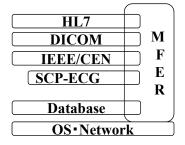
- データ生成・提供側
 - □ 医療機器(波形データ生成は医療機器で行わなければならない.薬機法対象品である)
 - □ 検査室,病棟,手術室,遠隔(臨床現場でデータは発生する)
 - 」 メガデータ(国内,海外,臨床現場から直接データを集めることができれば)
- データ処理側
 - □ メッセージ交換(通信仕様は別に定める.利用環境は波形データだけではない)
 - □ データベース構築(波形データだけでなく、結果・所見など検索が必要)
 - □ 信号処理(コンピュータ技術により高度な処理が可能)
- データ利用側
 - 表示・記録
 - 電子カルテ ビューアの利用(ユーザはデータの記述を知る必要は無い。 波形データが見れれば良い)
 - 他の情報(診断をするには患者情報,治療歴,家族歴などが必要)と共有
 - □研究
 - 本来の研究の目的に特化し集中出来ればよい。各種ツール類が共通で使用できる
 - データの再利用,過去から未来に波形データは再利用できる
 - データの共有, 貴重なデータを他のプロジェクトも共有できる
 - メガデータベースの構築、全世界、臨床の現場から稀少なデータでも収集が出来る
 - □ 教育
 - 紙データではなく、生のデータにより教育ができる

MFER制定の背景


- 心電情報を画像として管理していいのか
- DICOM, SCP-ECG等標準規格の重厚長大化
- IS&C規格の方向性(Second Stage of IS&C)
- 小電情報データベースのニーズ

- もっと単純な規格
- 他システムと容易に協調できる
- MFER委員会 2002年2月設立
 - 委員長:山内一信教授(名古屋大学)
 - 委員数:42名(医師、工学者、企業から参加)
 - 日本心電学会 技術・企画委員会とのジョイント

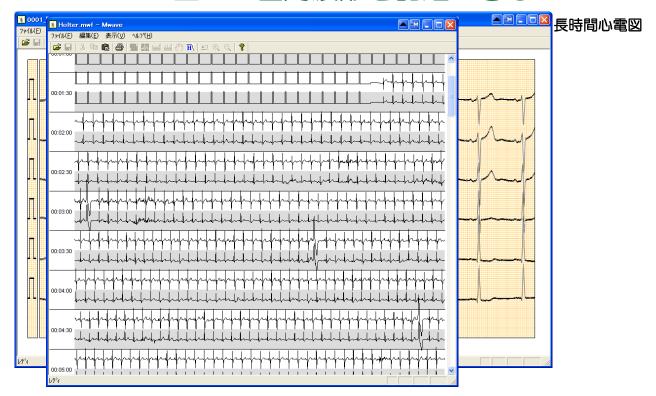
電子カルテに記述するには どういう技術が必要か


Extensible Markup Language

MFERの目的・意図・効果

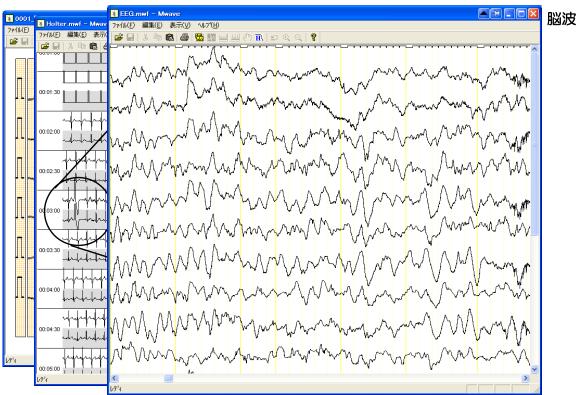
- 医用波形(だけ)に特化した記述
 - □ 波形データを分離すること(1つのオブジェクト)により
 - □メッセージ交換、保存、環境から独立
 - □ 他の(臨床)検査データと同様に扱える
- 簡単・安価な実装
 - 設計、理解、トラブルシューティング □単純
 - 開発, 実装, 評価, 保守 □安価
 - □ 使い易さ メーカ、ユーザ、研究者
- 予想される効果
 - □ メッセージ交換・・オーダリング,施設・運用に応じた仕様選択が可能
 - □ 診療・・・・・・・・・・・高精度な診療情報提供, 診断解析ツールの共有

 - ・・・・・理解が容易、多施設研究 □ 研究 • •



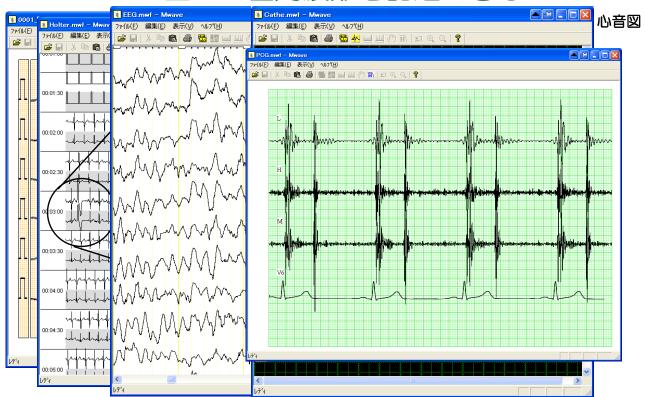
MFERの特長: 全ての医用波形を記述できる

MFERの特長: 全ての医用波形を記述できる

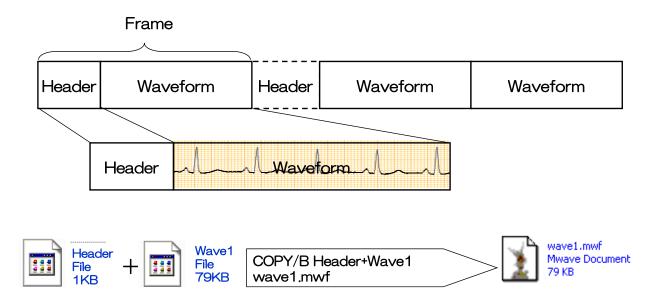


MFERの特長: 全ての医用波形を記述できる

MFERの特長: 全ての医用波形を記述できる

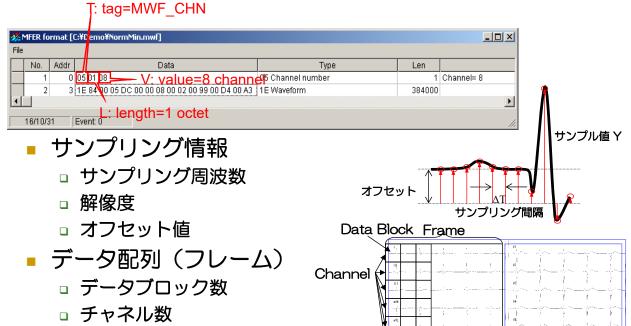

Medical waveform Format Encoding Rules

MFERの特長: 全ての医用波形を記述できる 検査



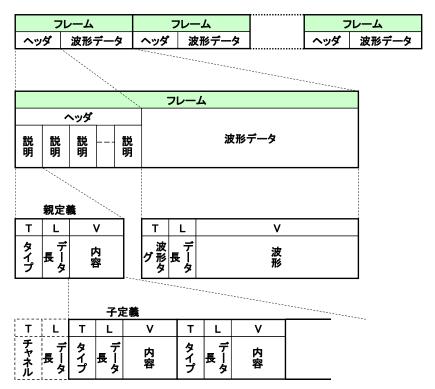
MFERの特長: 全ての医用波形を記述できる

仕様概要-1



シーケンス

仕様概要-2


■ Tag Length Value記述

Sequeence

TLV(Tag,Length,Value)記述

MFERで出来ること

- 電子カルテ・医療(遠隔)情報システム
 - □ 医用波形のペーパレスアプリケーション
 - □ 医用波形の原本データが、IEでも参照できる
 - □ 種々のペーパレス・ツールが利用できる
 - □ 波形を要求に従って編集,加工ができる
 - □ 専門家によるリモート診断ができる

研究

- □ 国内外の臨床現場から収集・データベースが構築できる
- □ データが共有して利用できる. 貴重なデータを共有できる
- □ 高度なツールが共有できる
- □ 報告にも生波形を添付することで、評価、再検、追試が容易

■ 教育

- □ 生波形が利用でき、実環境と同じデータで教育ができる
- メガ・データベースにより、高度な教育環境が実現できる

ISO TC215の役割と規格

ISO:電気及び電子技術分野を除く全産業分野(鉱工業、 農業、医薬品等)に関する国際規格

TC215: Health Informatics

- 医療情報における標準化をターゲットとする専門委員会 ISO規格の種類:
- □ IS: International Standard (国際規格)
 - 制定後 5年毎に見直し
- □ TS: Technical Specification (技術仕様書)
 - IS化/廃案は3年後に見直し、6年間有効
- □ TR: Technical Report (技術報告書)
 - 参考データ、ガイダンス 見直し規定なし

WG2: Systems and Device Interoperability (システム及び医療機器の相互運用性)

MFER: 22077 series

ISO/IS 22077-1: Encoding rules

2015-04 公開

2020-11 定期見直し

2021-10 FDIS投票、8週間

Notes: MFER was approved as TS11073-92001 in 2007. Since 2010 is a renewal year, ISO/IS 22077-1: Encoding rules is published.

ISO/TS 22077-2: Electrocardiography

2015-08 公開、2018-12 定期見直し 2021-02 IS化作業開始

ISO/TS 22077-3: Long term electrocardiography

2015-08 公開、2018-12 定期見直し

2021-02 IS化作業開始

ISO/TS 22077-4: Stress test electrocardiography

2019-08 公開

ISO/TS 22077-5: Neurophysiological signals

2021-04 公開

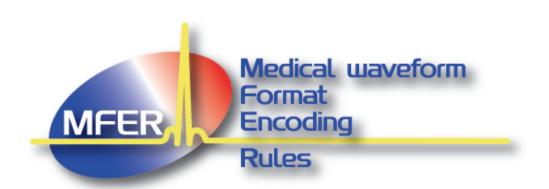
厚生労働省標準規格

■ 2010年3月31日

厚生労働省 医療保健情報分野の標準規格として認めるべき規格(厚生労働省標準規格)について HSO10 保健医療情報・医療波形フォーマット - 第92001部: 符号化規則

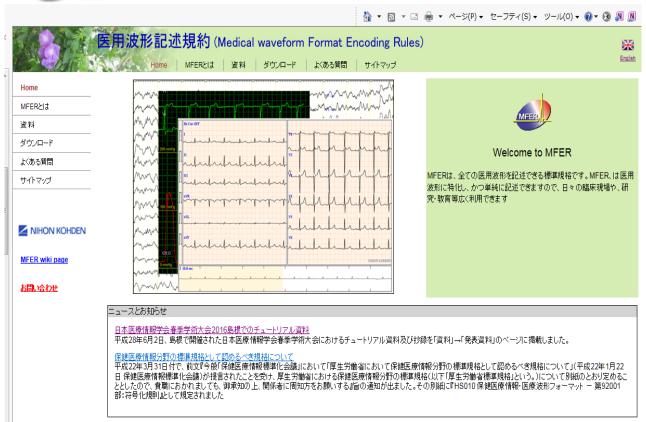
IS化に伴い更新

2016年4月13日採択HS028 ISO 22077-1:2015 保健医療情報一医用波形フォーマットーパート1:符号化規則


MFERを採用している規約等

- JAHIS標準
 - □ JAHIS生理検査データ交換規約
 - □ JAHIS生理機能検査レポート構造化記述規約
- IHE
 - □ 循環器分野 表示のための心電図の呼び出しプロファイル (National Extension)
- SFAMAT
 - □ 日本循環器学会 データ出力標準フォーマットガ イドライン

実装事例(国内)


- 東京女子医科大学心研様
 - □ 38万件の心電情報をMFERへ変換
- 東京大学附属病院様、国立循環器病研究センター様他
 - □ 心電図データをMFERへ変換して保管
- 都立広尾病院様他
 - □ フクダ電子心電計→MFER変換→日本光電システム
- 順天堂医院様他
 - □ 日本光電心電計→MFER変換→フクダ電子システム
- 岡崎市民病院様
 - □ IHE-JとMFERのコラボレート
- フクダ電子
 - □ ほぼ全ての心電計でMFERオフライン出力を標準実装
- 日本光電MFERステーション PrimeCreat CRT-1000
 - 生理検査データをSS-MIX準拠, HL7 CDA+MFER形式のスト レージ構造でファイリング
- メディカルストレージ
 - □ 日本光電QB-903Dを用いた簡易情報システム

MFERの今後・・・

http://www.mfer.org/jp/index.htm

ツール

- MFERビューア: Mwave Microsoft環境で動作するアプリケーション版とWEBビューア上で動作するJavaアプレット版。 アプリケーション版は、12誘導心電図、ホルタを含む長時間心電図、脳波、モニタ波形などを表示。Javaアプレットは、12誘導心電図のみ表示可能。
- MFERパーサ: MFRanz MFERで記述された書式を表示・確認するためのツール。
- MFER CSV変換: MFERcsv MFERで記述された波形データを、必要な個所を抽出しCSVに変換。 CSVに変換されたデータはExcelなどの汎用ツールで処理することができる。
- MFER画像変換:mfri
 12誘導心電図を,BMP,JPEG,PNG,GIF,PDF,SVG,CSVに変換。

MATLAB, OCTAVE等の活用

- MFER読み込み時間
 - □ 12誘導心電図:0.02秒
 - □ 脳波24ch 300秒: 0.25秒

MFER 読み込み

- x=mfer('file名')
- □ x=mfer('file名','std12') or
- x=mfer('file名','st:ed')

 x=mfer('file名','st:ed')

 x=mfer('file名','st:ed','st:ed') or x=mfer('file名','st:ed','st:ed')

st:読み込み開始フレーム ed:読み込み終了フレーム

今後の作業

- ISO規格化の推進
 - 12誘導心電図(22077-2),長時間心電図(22077-3)のIS化
 - □適応規格の拡充

■ 普及活動

- □ ツール,アプリケーションの提供,充実
- □ ホームページ(英語,日本語)の充実
- □ 日本語ドキュメントの充実
- □ 英語ドキュメント, 論文の充実
- □ 学会, 研究会等
- □ HL7, IEEE, IHE, DICOM等海外団体との連携

ご清聴ありがとうございます

MFERページ http://www.mfer.org/jp/index.htm