上の図は手関節屈伸運動時の手関節屈筋(橈側手根屈筋)の筋電図です。横軸が時間、縦軸が筋電位です。青の線が生波形で、赤線が1秒ごとに平均して筋活動の大きさをわかりやすくしたRMS(Root Mean Square: 平方二乗根)波形です。3つの大きな山が確認できますが、最後の山は、抵抗を加えて最大努力で筋を収縮しているときのものです。この時、山が一番高くなっています。これを見ると、筋活動は大きな力を出すほど山が高くなるようです。では、山の高さから、力の大きさを推定することはできるのでしょうか?
ここで、一度、体表に張り付けた電極で何をとらえているのかを考えてみます。電極では、皮膚の下で起きている電気的な活動を捉えています。そして、筋を収縮した時に起きる電気的な活動といえば・・・生理学で習った「細胞の興奮」です。
筋肉の細胞も興奮すると電気的な変化、活動電位が生じます。活動電位は、「全か無か」の法則に従います。閾値以上の刺激で筋細胞が興奮するれば、決まった活動電位が生じ、閾値以下であれば活動電位は生じません。この筋細胞、筋肉では筋線維を指します
筋線維が興奮すると、活動電位を生じる。そして、なんで筋線維が興奮するかというと、神経から興奮が伝達されるからです。神経と筋線維との関係をみると、一つの神経細胞(神経ニューロン)が一つの筋線維を支配することはあまりなく、複数の筋線維を支配します。これが、運動単位(motor unit)と呼ばれるものです。
さて、今、5つの筋線維を支配する運動単位があったとします。神経の興奮が伝わると、この5つの筋線維はほぼ同時に活動電位を生じます。この時の電位の大きさは、活動電位の5倍と相当するイメージです。
この図は、サイズの小さい運動単位から収縮が始まり、大きな力を出すほど、サイズの大きな運動単位が活動を始めることを示しています。そして、大きな力を出すほど、電位も大きくなっていきます。この図は、筋電位が大きいほど、大きな筋出力が得られることを端的に示しています。
実際は、表面電極で計測する筋電位の大きさから、収縮力の大きさを正確に見積もることはできません。「1V振幅は100Nの力を意味する」というわけにはいかず、1Vの振幅が1Nの時も、100Nの時もある、という感じです。その理由は次のようなことによります。
筋の収縮力は、その筋が置かれている状態、「短縮位か伸張位か」 によって変化します。
筋の収縮は、分子レベルで見ると、ミオシンフィラメントの間をアクチンフィラメントが滑走することで生じます。ミオシンとアクチンは、互いに近づきすぎても、また、離れすぎても滑走しにくくなり、「ちょうどよい位置」にあった時に十分に滑走できて大きな力を生み出します。筋が伸ばされても、縮まってもいない自然長の時に収縮力が最大になります。
ただ、筋には、伸ばされたときに縮まろうとする力、弾性力もあります。収縮力と弾性力の合計が、関節を動かす力となります。
筋がどのように伸ばされていても、活動電位の積算である筋電位は変わらりません。このため、筋電位が変わらなくても、張力が変わることがあると考えられます。
表面電極は、皮膚上にあるがゆえ、皮下組織の厚さにより抵抗が増し、大きな力を発揮し、筋電位も大きいはずなのに、電極で拾える変化が小さいということもあります。膝の伸展筋である内側広筋と膝の屈筋である大腿四頭筋の筋電位の大きさを比較する際、脂肪層が厚さがそれぞれに違うと思われるので、単純な大きさの比較で、力の大きさを比べたことにはなりません。
例えば、上腕二頭筋の表面に電極を貼り、肘関節の屈曲運動時の筋電図を計測することを考えてみます。肘を曲げようとしようとする力は上腕二頭筋のみならず、腕橈骨筋や上腕筋なども参加して生み出しているので、表面電極が計測する電位変化は、上腕二頭筋の活動だけでなく、これら周囲の筋の活動の結果も混入しています。
こうした点から、筋活動から収縮の程度を知るために、最大収縮時に対する比率が用いられます。本人が発揮できる大きさの何パーセントの収縮の大きさなのかで、力の大きさはわからずとも、収縮が大きいのか、小さいのか、判断できます。