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SCRUM-Japan Project Since 2015
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Comprehensive NGS (Next Generation Sequencing) test by central vendor
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GOZILA Nationwide ctDNA Screening Project
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Guardant Health

Blood

n Launched on Jan, 2018
n All GI cancers
n Sample size: 5000

p 4069 pts enrolled by Apr 2021

G360 analysis
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ctDNA解析の利点
p Turnaround timeが短く患者の治療適応の判断が速やかに可能

p Heterogeneityを評価することが可能
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ctDNA解析のゲノム医療に対する有⽤性

GI-SCREEN-Japanと

GOZILAで以下の項⽬を⽐較

• 登録から結果到着までの期間

• 治験に登録された患者さんの割合

• 治験治療の効果

対象（~2019年8⽉）

GI-SCREEN︓5743名

GOZILA︓1787名
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GI-SCREEN-Japan

GOZILA

��

2015年2⽉に開始した腫瘍組織パネル検査のスクリーニングプロジェクト
5000名以上の患者さんが参加

2018年1⽉に開始したctDNAパネル検査のスクリーニングプロジェクト
3000名以上の患者さんが参加
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Turnaround Time

LETTERSNATURE MEDICINE

the alteration and correlates to the likelihood of its presence in 
any given localized tissue sample. As such, concordance should be 
dependent on ctDNA clonality. Indeed, in the 287 GOZILA patients 
with both tissue and ctDNA genotyping, the positive predictive 
value (PPV) of ctDNA relative to tissue was increasingly dependent 
on ctDNA clonal fraction at lower values (<30%) but was largely 
insensitive at higher values (Fig. 3a). This dependency was similar, 
though more variable, relative to ctDNA VAF. As expected given the 
putatively focal origin of subclonal alterations, PPV was markedly 
higher for clonal alterations than for subclonal (80.3 versus 8.3%, 
Fisher’s exact test P < 0.0001; Fig. 3b). These findings indicate that 
subclonal ctDNA alterations reflect heterogeneously distributed 
mutations that are often missed by single-locus tissue analysis.

The most common treatment-relevant biomarkers in GI can-
cers—KRAS, NRAS and BRAF mutations—may arise either as 
clonal oncogenic drivers or acquired resistance mutations, and each 
origin has distinct therapeutic implications. Given that both origins 

are captured by ctDNA, they have the potential to confound treat-
ment selection. To evaluate this, we analyzed 232 patients with CRC 
for whom both tissue and ctDNA genotyping results were avail-
able. We observed high overall concordance (84.9–100%), which 
increased to near 100% in clonal alterations (97.0–100%; Fig. 3c). 
As such, clonal ctDNA alterations reflect the same clinical impor-
tance established by tissue analyses although, as previous studies 
have suggested15, subclonal ctDNA alterations may not.

Unsurprisingly, the clonality distribution of ctDNA mutations 
was markedly bimodal, with >50% subclonal (Extended Data Fig. 5).  
This general distribution was observed in all tumor types; however, 
the ratio of subclonal-to-clonal differed by tumor type, with clonal 
mutations dominating in PDAC while subclonal mutations were 
most common in CRC (Fig. 3d).

In contrast to the generally consistent overall clonality distri-
butions, individual genes exhibited very different clonal distri-
butions that also varied by tumor type (Fig. 3e): high clonality in 
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Fig. 1 | Utility of ctDNA genotyping versus tissue genotyping in screening for targeted therapy trials. a, Sequencing success rates for tissue and ctDNA 
genotyping. QNS, quantity not sufficient. b, Turnaround time for both genotyping studies. Two-sided P!value is based on the Mann–Whitney test. c, Proportions 
of patients with actionable alterations identified in each study, with annotation based on OncoKB (FDA-recognized biomarkers, level 1; standard of 
care biomarkers, level 2; investigational in indication, level 3a; or in another indication, level 3b). GOZILA patients without actionable alterations were 
subclassified as either ctDNA fraction ≥3!×!LoD!(limit of detection (0.2%), high likelihood of being wild type for all markers), <3!×!LoD (moderate likelihood 
of being wild type) or undetectable (unevaluable). d, Proportions of patients enrolled in a matched clinical trial among those with at least one actionable 
alteration. Two-sided P!value is based on the chi-square test. e, Patient accrual to affiliated interventional clinical trials. f, ORR for investigational therapy in 
patients enrolled in trials based on GOZILA versus GI-SCREEN genotyping (n!=!60 versus 126). Two-sided P!value is based on Fisher’s exact test. g, PFS for 
patients enrolled in trials based on GOZILA versus GI-SCREEN. Two-sided P!value is based on the log-rank test. HR, hazard ratio; CI, confidence interval.
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Proportion of Actionable Alteration
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the alteration and correlates to the likelihood of its presence in 
any given localized tissue sample. As such, concordance should be 
dependent on ctDNA clonality. Indeed, in the 287 GOZILA patients 
with both tissue and ctDNA genotyping, the positive predictive 
value (PPV) of ctDNA relative to tissue was increasingly dependent 
on ctDNA clonal fraction at lower values (<30%) but was largely 
insensitive at higher values (Fig. 3a). This dependency was similar, 
though more variable, relative to ctDNA VAF. As expected given the 
putatively focal origin of subclonal alterations, PPV was markedly 
higher for clonal alterations than for subclonal (80.3 versus 8.3%, 
Fisher’s exact test P < 0.0001; Fig. 3b). These findings indicate that 
subclonal ctDNA alterations reflect heterogeneously distributed 
mutations that are often missed by single-locus tissue analysis.

The most common treatment-relevant biomarkers in GI can-
cers—KRAS, NRAS and BRAF mutations—may arise either as 
clonal oncogenic drivers or acquired resistance mutations, and each 
origin has distinct therapeutic implications. Given that both origins 

are captured by ctDNA, they have the potential to confound treat-
ment selection. To evaluate this, we analyzed 232 patients with CRC 
for whom both tissue and ctDNA genotyping results were avail-
able. We observed high overall concordance (84.9–100%), which 
increased to near 100% in clonal alterations (97.0–100%; Fig. 3c). 
As such, clonal ctDNA alterations reflect the same clinical impor-
tance established by tissue analyses although, as previous studies 
have suggested15, subclonal ctDNA alterations may not.

Unsurprisingly, the clonality distribution of ctDNA mutations 
was markedly bimodal, with >50% subclonal (Extended Data Fig. 5).  
This general distribution was observed in all tumor types; however, 
the ratio of subclonal-to-clonal differed by tumor type, with clonal 
mutations dominating in PDAC while subclonal mutations were 
most common in CRC (Fig. 3d).

In contrast to the generally consistent overall clonality distri-
butions, individual genes exhibited very different clonal distri-
butions that also varied by tumor type (Fig. 3e): high clonality in 
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Fig. 1 | Utility of ctDNA genotyping versus tissue genotyping in screening for targeted therapy trials. a, Sequencing success rates for tissue and ctDNA 
genotyping. QNS, quantity not sufficient. b, Turnaround time for both genotyping studies. Two-sided P!value is based on the Mann–Whitney test. c, Proportions 
of patients with actionable alterations identified in each study, with annotation based on OncoKB (FDA-recognized biomarkers, level 1; standard of 
care biomarkers, level 2; investigational in indication, level 3a; or in another indication, level 3b). GOZILA patients without actionable alterations were 
subclassified as either ctDNA fraction ≥3!×!LoD!(limit of detection (0.2%), high likelihood of being wild type for all markers), <3!×!LoD (moderate likelihood 
of being wild type) or undetectable (unevaluable). d, Proportions of patients enrolled in a matched clinical trial among those with at least one actionable 
alteration. Two-sided P!value is based on the chi-square test. e, Patient accrual to affiliated interventional clinical trials. f, ORR for investigational therapy in 
patients enrolled in trials based on GOZILA versus GI-SCREEN genotyping (n!=!60 versus 126). Two-sided P!value is based on Fisher’s exact test. g, PFS for 
patients enrolled in trials based on GOZILA versus GI-SCREEN. Two-sided P!value is based on the log-rank test. HR, hazard ratio; CI, confidence interval.
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Clinical Trial Enrollment Rate
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the alteration and correlates to the likelihood of its presence in 
any given localized tissue sample. As such, concordance should be 
dependent on ctDNA clonality. Indeed, in the 287 GOZILA patients 
with both tissue and ctDNA genotyping, the positive predictive 
value (PPV) of ctDNA relative to tissue was increasingly dependent 
on ctDNA clonal fraction at lower values (<30%) but was largely 
insensitive at higher values (Fig. 3a). This dependency was similar, 
though more variable, relative to ctDNA VAF. As expected given the 
putatively focal origin of subclonal alterations, PPV was markedly 
higher for clonal alterations than for subclonal (80.3 versus 8.3%, 
Fisher’s exact test P < 0.0001; Fig. 3b). These findings indicate that 
subclonal ctDNA alterations reflect heterogeneously distributed 
mutations that are often missed by single-locus tissue analysis.

The most common treatment-relevant biomarkers in GI can-
cers—KRAS, NRAS and BRAF mutations—may arise either as 
clonal oncogenic drivers or acquired resistance mutations, and each 
origin has distinct therapeutic implications. Given that both origins 

are captured by ctDNA, they have the potential to confound treat-
ment selection. To evaluate this, we analyzed 232 patients with CRC 
for whom both tissue and ctDNA genotyping results were avail-
able. We observed high overall concordance (84.9–100%), which 
increased to near 100% in clonal alterations (97.0–100%; Fig. 3c). 
As such, clonal ctDNA alterations reflect the same clinical impor-
tance established by tissue analyses although, as previous studies 
have suggested15, subclonal ctDNA alterations may not.

Unsurprisingly, the clonality distribution of ctDNA mutations 
was markedly bimodal, with >50% subclonal (Extended Data Fig. 5).  
This general distribution was observed in all tumor types; however, 
the ratio of subclonal-to-clonal differed by tumor type, with clonal 
mutations dominating in PDAC while subclonal mutations were 
most common in CRC (Fig. 3d).

In contrast to the generally consistent overall clonality distri-
butions, individual genes exhibited very different clonal distri-
butions that also varied by tumor type (Fig. 3e): high clonality in 

0
10
20
30
40
50
60
70
80
90

100

Su
cc

es
s r

at
e 

(%
)

89.4% 99.9%

GI-SCREEN
(tissue)

n = 5,621

GOZILA
(ctDNA)

n = 1,687

QNS
10.6%

QNS
0.1%

a

0 5 10 15 20 25 30 35
Time (days)

GI-SCREEN
(tissue)

n = 5,621

GOZILA
(ctDNA)

n = 1,687 Interval between enrollment and sample reception
Time from receiving samples to reporting results

Median
14 days

Median
4 days

Median
19 days

Median
7 days

P < 0.0001

b

Level 3b (49.3%)

Level 1 (4.0%)
Level 2 (3.9%)

ctDNA not 
detected (8.8%)

Level 1 (2.9%)
Level 2 (3.1%)

Level 3b (48.3%)

Other (45.7%)
Level 3a (0.04%)

GI-SCREEN
(tissue)

n = 5,621

GOZILA
(ctDNA)

n = 1,687

Level 3a (0.06%)

ctDNA fraction 
≥3× LoD(21.8%)

ctDNA fraction 
<3× LoD(12.3%)

c

0
1
2
3
4
5
6
7
8
9

10

Pa
tie

nt
s e

nr
oll

ed
 in

 a
 tr

ial
 (%

)
Ob

jec
tiv

e 
re

sp
on

se
 ra

te
 (%

)

GI-SCREEN
(tissue)

GOZILA
(ctDNA)

GI-SCREEN
(tissue)

GOZILA
(ctDNA)

P < 0.0001

126/3,055 (4.1%)

60/632 (9.5%)

d

0Nu
m

be
r o

f p
at

ien
ts 

en
ro

lle
d 

in 
a 

tri
al

20
40
60
80

100
120
140
160

Fe
b 

15
Ap

r 1
5

Ju
n 

15
Au

g 
15

Oc
t 1

5
De

c 1
5

Fe
b 

16
Ap

r 1
6

Ju
n 

16
Au

g 
16

Oc
t 1

6
De

c 1
6

Fe
b 

17
Ap

r 1
7

Ju
n 

17
Au

g 
17

Oc
t 1

7
De

c 1
7

Fe
b 

18
Ap

r 1
8

Ju
n 

18
Au

g 
18

Oc
t 1

8
De

c 1
8

Fe
b 

19
Ap

r 1
9

Total
Tissue only

Date

GOZILA launched

1.1 patients per month
4.1 patients per month

8.1 patients per month
e

0
2
4
6
8

10
12
14
16
18
20

P = 0.69

21/126 (16.7%)

12/60 (20.0%)

f

0 3 6 9 12 15 18
0

20

40

60

80

100

n Median PFS
(months)

HR 
(95% CI) P

GI-SCREEN 1.07 
(0.77–1.47) 0.70

GOZILA
126 2.8
60 2.4

Pr
og

re
ss

ion
-fr

ee
 su

rv
iva

l (
%

)

Time (months)

g

Fig. 1 | Utility of ctDNA genotyping versus tissue genotyping in screening for targeted therapy trials. a, Sequencing success rates for tissue and ctDNA 
genotyping. QNS, quantity not sufficient. b, Turnaround time for both genotyping studies. Two-sided P!value is based on the Mann–Whitney test. c, Proportions 
of patients with actionable alterations identified in each study, with annotation based on OncoKB (FDA-recognized biomarkers, level 1; standard of 
care biomarkers, level 2; investigational in indication, level 3a; or in another indication, level 3b). GOZILA patients without actionable alterations were 
subclassified as either ctDNA fraction ≥3!×!LoD!(limit of detection (0.2%), high likelihood of being wild type for all markers), <3!×!LoD (moderate likelihood 
of being wild type) or undetectable (unevaluable). d, Proportions of patients enrolled in a matched clinical trial among those with at least one actionable 
alteration. Two-sided P!value is based on the chi-square test. e, Patient accrual to affiliated interventional clinical trials. f, ORR for investigational therapy in 
patients enrolled in trials based on GOZILA versus GI-SCREEN genotyping (n!=!60 versus 126). Two-sided P!value is based on Fisher’s exact test. g, PFS for 
patients enrolled in trials based on GOZILA versus GI-SCREEN. Two-sided P!value is based on the log-rank test. HR, hazard ratio; CI, confidence interval.
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Interval between Screening and Trial Enrollment
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Extended Data Fig. 2 | Screening period duration. a, Median interval between screening initiation and matched clinical trial enrollment. Two-sided P value 
is based on the Mann-Whitney test. b, Median interval between sample collection and matched clinical trial enrollment. Two-sided P value is based on the 
Mann-Whitney test.

NATURE MEDICINE | www.nature.com/naturemedicine



Efficacy of Clinical Trials
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the alteration and correlates to the likelihood of its presence in 
any given localized tissue sample. As such, concordance should be 
dependent on ctDNA clonality. Indeed, in the 287 GOZILA patients 
with both tissue and ctDNA genotyping, the positive predictive 
value (PPV) of ctDNA relative to tissue was increasingly dependent 
on ctDNA clonal fraction at lower values (<30%) but was largely 
insensitive at higher values (Fig. 3a). This dependency was similar, 
though more variable, relative to ctDNA VAF. As expected given the 
putatively focal origin of subclonal alterations, PPV was markedly 
higher for clonal alterations than for subclonal (80.3 versus 8.3%, 
Fisher’s exact test P < 0.0001; Fig. 3b). These findings indicate that 
subclonal ctDNA alterations reflect heterogeneously distributed 
mutations that are often missed by single-locus tissue analysis.

The most common treatment-relevant biomarkers in GI can-
cers—KRAS, NRAS and BRAF mutations—may arise either as 
clonal oncogenic drivers or acquired resistance mutations, and each 
origin has distinct therapeutic implications. Given that both origins 

are captured by ctDNA, they have the potential to confound treat-
ment selection. To evaluate this, we analyzed 232 patients with CRC 
for whom both tissue and ctDNA genotyping results were avail-
able. We observed high overall concordance (84.9–100%), which 
increased to near 100% in clonal alterations (97.0–100%; Fig. 3c). 
As such, clonal ctDNA alterations reflect the same clinical impor-
tance established by tissue analyses although, as previous studies 
have suggested15, subclonal ctDNA alterations may not.

Unsurprisingly, the clonality distribution of ctDNA mutations 
was markedly bimodal, with >50% subclonal (Extended Data Fig. 5).  
This general distribution was observed in all tumor types; however, 
the ratio of subclonal-to-clonal differed by tumor type, with clonal 
mutations dominating in PDAC while subclonal mutations were 
most common in CRC (Fig. 3d).

In contrast to the generally consistent overall clonality distri-
butions, individual genes exhibited very different clonal distri-
butions that also varied by tumor type (Fig. 3e): high clonality in 
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Fig. 1 | Utility of ctDNA genotyping versus tissue genotyping in screening for targeted therapy trials. a, Sequencing success rates for tissue and ctDNA 
genotyping. QNS, quantity not sufficient. b, Turnaround time for both genotyping studies. Two-sided P!value is based on the Mann–Whitney test. c, Proportions 
of patients with actionable alterations identified in each study, with annotation based on OncoKB (FDA-recognized biomarkers, level 1; standard of 
care biomarkers, level 2; investigational in indication, level 3a; or in another indication, level 3b). GOZILA patients without actionable alterations were 
subclassified as either ctDNA fraction ≥3!×!LoD!(limit of detection (0.2%), high likelihood of being wild type for all markers), <3!×!LoD (moderate likelihood 
of being wild type) or undetectable (unevaluable). d, Proportions of patients enrolled in a matched clinical trial among those with at least one actionable 
alteration. Two-sided P!value is based on the chi-square test. e, Patient accrual to affiliated interventional clinical trials. f, ORR for investigational therapy in 
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the alteration and correlates to the likelihood of its presence in 
any given localized tissue sample. As such, concordance should be 
dependent on ctDNA clonality. Indeed, in the 287 GOZILA patients 
with both tissue and ctDNA genotyping, the positive predictive 
value (PPV) of ctDNA relative to tissue was increasingly dependent 
on ctDNA clonal fraction at lower values (<30%) but was largely 
insensitive at higher values (Fig. 3a). This dependency was similar, 
though more variable, relative to ctDNA VAF. As expected given the 
putatively focal origin of subclonal alterations, PPV was markedly 
higher for clonal alterations than for subclonal (80.3 versus 8.3%, 
Fisher’s exact test P < 0.0001; Fig. 3b). These findings indicate that 
subclonal ctDNA alterations reflect heterogeneously distributed 
mutations that are often missed by single-locus tissue analysis.

The most common treatment-relevant biomarkers in GI can-
cers—KRAS, NRAS and BRAF mutations—may arise either as 
clonal oncogenic drivers or acquired resistance mutations, and each 
origin has distinct therapeutic implications. Given that both origins 

are captured by ctDNA, they have the potential to confound treat-
ment selection. To evaluate this, we analyzed 232 patients with CRC 
for whom both tissue and ctDNA genotyping results were avail-
able. We observed high overall concordance (84.9–100%), which 
increased to near 100% in clonal alterations (97.0–100%; Fig. 3c). 
As such, clonal ctDNA alterations reflect the same clinical impor-
tance established by tissue analyses although, as previous studies 
have suggested15, subclonal ctDNA alterations may not.

Unsurprisingly, the clonality distribution of ctDNA mutations 
was markedly bimodal, with >50% subclonal (Extended Data Fig. 5).  
This general distribution was observed in all tumor types; however, 
the ratio of subclonal-to-clonal differed by tumor type, with clonal 
mutations dominating in PDAC while subclonal mutations were 
most common in CRC (Fig. 3d).

In contrast to the generally consistent overall clonality distri-
butions, individual genes exhibited very different clonal distri-
butions that also varied by tumor type (Fig. 3e): high clonality in 
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ctDNA解析の利点
p Turnaround timeが短く患者の治療適応の判断が速やかに可能

p Heterogeneityを評価することが可能
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Heterogeneity by ctDNA Analysis

Nakamura Y, et al. Nat Rev Clin Oncol 2021.13



Clonal Evolution Captured by ctDNA Analysis

Siravegna G, et al. Nat Med 2015.14
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chemotherapeutic agents. We discovered 
that the percentage of mutated KRAS clones 
declines in blood when EGFR-specific anti-
bodies are withdrawn, suggesting that resist-
ant cell populations are highly dynamic. To 
functionally substantiate these discoveries, 
we examined preclinical models of acquired 
resistance to cetuximab. Analogously to what 
we observed in patients, we noted that KRAS 
clones decay in drug-resistant populations 
upon antibody withdrawal.

These results, together with the clinical 
cases in which we documented effectiveness 
of re-challenge with EGFR-specific antibod-
ies paralleled by increasing and decreasing 
percentages of mutated KRAS clones, provide 
the rationale for adaptive therapy strategies. 
In this regard, discontinuous dosing strategy 
with BRAF inhibitors has been successfully 
attempted in preclinical models of BRAF-
driven melanomas36. Furthermore, there is 
evidence that re-challenge with targeted thera-
pies can be effective in subjects with different 
tumors types32,37–39.

Our data suggests that further study should 
assess whether CRC cells that develop resist-
ance to EGFR may display a fitness disadvantage in the absence of the 
drug, and whether this can be exploited to forestall the onset of lethal 
drug-resistant disease. Drug schedules, aimed at maintaining a stable 
population of drug-sensitive cells to suppress the growth of resistant 
clones through intratumoral competition, could be explored in ad hoc 
clinical trials. Accordingly, we plan to investigate the re-introduction 
of EGFR-specific antibodies in patients who achieve benefit from 
cetuximab or panitumumab and subsequently display a decline in the 
percentage of mutated KRAS clones in ctDNA.

In conclusion, our data indicate that blood, rather than tissue,  
can be used to closely monitor the molecular evolution of metastatic 

colorectal tumors. The finding that the genome of CRC adapts dynam-
ically to pulsatile drug schedules provides a rationale for additional 
lines of therapy for individuals who benefit from an initial challenge 
with EGFR-specific antibodies.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 3 Mutated KRAS mutant clones  
dynamically evolve in response to pulsatile  
EGFR-specific antibody therapy. Dynamics  
of KRAS mutant clones in plasma samples  
of mCRC patients HMAR-CRC08 (a), ONCG-
CRC69 (b) and AOUP-CRC05 (c), with each  
receiving the indicated therapies. Gray bars 
represent variation of tumor load, compared  
to baseline, during treatments as specified 
below the graphs. Tumor load was calculated  
as described in Figure 1 legend. Relevant 
clinical events are indicated in gray boxes  
below the individual graphs. Black and red  
lines indicate the frequency of KRAS mutation 
(percentage of alleles) detected in circulating  
DNA at the indicated time points. Black stars 
represent analyzed tissue samples. Dotted blue 
line indicates CEA values. Cetux, cetuximab;  
Panit, panitumumab; Rego, regorafenib.  
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MONSTAR-SCREEN
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Solid tumors

Systemic therapyF1L CDx

Microbiome
Assess temporal changes in cancer biomarkers thorough systemic therapy
Next stage MONSTAR-SCREEN will be launched soon with whole-exome 
transcriptome analysis of circulating tumor nucleic acids



Tissue/ctDNA Genotyping

Ogata D, et al.; Yamanaka T, et al.; Watanabe K, et al.; Kadowaki S, et al.; Chiyoda T, et al.;  Masuishi T, et al.; and Nonomua N, et al. JSMO 2021.17

F1Lで検出された変異全体の21%〜44%がF1Lのみでしか検出されなかった。

Gastrointestinal cancer MelanomaGenitourinary cancerHead and neck cancer

F1L Only

F1L+F1T

35%

31%

Gynecologic cancer

33% 21%
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%
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Hepatobiliary 
and Pancreatic Cancer Breast cancer
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ctDNA解析の⽋点
pエビデンスが少ない

p ctDNAの滲出量が少ない症例では遺伝⼦異常の評価が困難

p Subclonal遺伝⼦異常の治療標的としての意義が不明

pクローン造⾎（Clonal hematopoiesis: CHIP）の区別が不
可能
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ctDNA解析の⽋点
pエビデンスが少ない

p ctDNAの滲出量が少ない症例では遺伝⼦異常の評価が困難
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ctDNA解析の前向きエビデンス

20

Phase Drug ctDNA Assay Cancer Alteration Trial

3 Alpelisib Therascreen
PIK3CA RGQ Breast cancer PIK3CA mutation SOLAR-1

3 Buparlisib Inostics BEAMing Breast cancer PIK3CA mutation BELLE-3

3 Osimertinib* Cobas EGFR
Guardant360 Non-small-cell lung cancer EGFR mutation FLAURA, 

AURA3

2 Pertuzumab + 
trastuzumab Guardant360 Colorectal cancer HER2 amplification TRIUMPH

2 Bemarituzumab Not disclosed Gastric cancer FGFR2 amplification FIGHT

2 Tepotinib Guardant360 Non-small-cell lung cancer MET ex14 skipping VISION

2 Rucaparib* F1L CDx Prostate cancer BRCA1/2 alteration TRITON2

*検体採取は前向き、解析は後ろ向き



Prospective Evidence of ctDNA Analysis

Nakamura Y, et al. ESMO 2019.21

Trastuzumab 
8 mg/kg load then 6 mg/kg

+
Pertuzumab

840 mg load then 420 mg

Q3W until PD

l Metastatic CRC
l ECOG PS of 0 or 1
l Refractory or intolerant to standard therapy that 

included anti-EGFR monoclonal antibody
l RAS wild-type by tissue analysis
l HER2 positive by tissue analysis: IHC 3+ or FISH 

positive (HER2/CEP17 ratio ≥ 2.0)
or 
ERBB2-amplified and RAS wild-type identified by 
ctDNA analysis (NGS-based assay, Guardant360)

Key eligibility criteria 

Meet
eligibility 
criteria

Primary endpoint: 
l Confirmed objective response rate (ORR) in ERBB2 amp group confirmed by tissue analysis
l Confirmed ORR in ERBB2 amp group confirmed by ctDNA analysis

Sample size and statistical plan: 25 with one-sided 𝛼 = 2.5%, 𝛽 = 10%, H0 = 5% ORR, and H1 = 30% ORR 
for each tissue and ctDNA positive group, ≥ 5 responses needed to reject H0.



Prospective Evidence of ctDNA Analysis

Nakamura Y, et al. ESMO 2019.22

ORR N (% [95% CI]) DCR N (% [95% CI])
Tissue positive group (N = 17)
All 6 (35.3 [14.2-61.7]) 11 (64.7 [38.3-85.8])
Tumor site
Right-sided (N = 1)
Left-sided (N = 16)

1
5

(100.0 [2.5-100.0])
(31.3 [11.0-58.7])

1
10

(100.0 [2.5-100])
(62.5 [35.4-84.8])

ctDNA RAS/BRAF/PIK3CA/ERBB2*
WT (N = 11)
MT (N = 5)

6
0

(54.5 [23.4-83.3])
(0.0 [0.0-52.2])

10
0

(90.9 [58.7-99.8])
(0.0 [0-52.2])

ctDNA positive group (N = 15)
All 5 (33.3 [11.8-61.6]) 9 (60.0 [32.3-83.7])
Tumor site
Right-sided (N = 2)
Left-sided (N = 13)

1
4

(50.0 [13.0-98.7])
(30.8 [9.1-68.4])

1
8

(50.0 [1.3-98.7])
(61.5 [31.6-86.1])

ctDNA RAS/BRAF/PIK3CA/ERBB2
WT (N = 11)
MT (N = 4)

5
0

(45.5 [16.7-76.6])
(0.0 [0.0-60.2])

9
0

(81.8 [48.2-97.7])
(0.0 [0.0-60.2])



Prospective Evidence of ctDNA Analysis
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Paik PK, et al. N Engl J Med 2020.

Catenacci D, et al. ASCO 2021.

Tepotinib for MET+ NSCLC

Bemarituzumab for FGFR2+ gastric cancer



ctDNA解析の⽋点
pエビデンスが少ない

p ctDNAの滲出量が少ない症例では遺伝⼦異常の評価が困難

p Subclonal遺伝⼦異常の治療標的としての意義が不明

pクローン造⾎（Clonal hematopoiesis: CHIP）の区別が不
可能
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ctDNA滲出に影響を与えうる因⼦
p 採⾎⼿順

p 患者因⼦ー⽇内変動、喫煙、妊娠、運動、合併症（炎症性疾患、貧⾎、⼼
疾患、代謝性疾患、⾃⼰免疫性疾患など）、輸⾎、⾻髄移植、臓器移植

p 腫瘍因⼦ーがん種、腫瘍量、転移臓器個数、転移臓器部位など

Nakamura Y, et al. ESMO Open 2020.25



ctDNA Level across Cancer Types

G360CDx Technical Information26
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Figure 1. Maximum MAF Distribution by Cancer Type  

 
 
In addition to these QC metrics, cfDNA fragment distributions in a large cohort of 
clinical patient samples was examined to demonstrate similarity of profiles across 
cancer types. Similar to other QC metrics, cancer type explained less than 1% of the 
variance in the locations of the cfDNA fragment size profile peak. 
6.11 Concordance - Guardant360 CDx Comparison to Guardant360 LDT  
A study was performed to establish the concordance between Guardant360 CDx and 
Guardant360 LDT.  The purpose of this study was to compare the Guardant360 CDx 
against a Guardant360 LDT configuration used to generate historical data and is 
intended to support the use of those results as representative of Guardant360 CDx 
results.  
The design and composition of these two devices is similar, as they share the same 
principles of operation. The primary differences in design are the panel with which the 
device is operated. The Guardant360 LDT version used for data generation in support 
of concordance to the for Guardant360 CDx test in this study was operated with 
version 2.10 of the panel, which covers 73 genes. The Guardant CDx is operated with 
version 2.11 of the panel, which covers 74 genes. While the Guardant360 CDx can 
detect alterations in 74 genes, it only reports select SNVs and indels in 55 genes, 
CNAs in two (2) genes, and fusions in four (4) genes. The concordance analysis 
between the Guardant360 CDx and the Guardant360 LDT is limited to 55 gene 
restricted reportable range. This concordance analysis utilized the bioinformatics 
pipeline software corresponding to each assay version.  



ctDNA解析の⽋点
pエビデンスが少ない

p ctDNAの滲出量が少ない症例では遺伝⼦異常の評価が困難

p Subclonal遺伝⼦異常の治療標的としての意義が不明

pクローン造⾎（Clonal hematopoiesis: CHIP）の区別が不
可能

27



腫瘍組織解析とctDNA解析の使い分け（私⾒）

28

腫瘍組織解析Favor
ü 豊富なエビデンス
ü 腫瘍量と関係なく評価可能
ü Clonalな遺伝⼦異常のみ評価
ü CHIPの懸念が少ない

ctDNA解析Favor
ü TATが短い
ü Heterogeneityを評価可能

がん種 ctDNA滲出量が少ない
（脳腫瘍、腎細胞がん、悪性⿊⾊腫、etc.）

腫瘍量

治療ライン

ctDNA滲出量が多い
（消化器がん、乳がん、膀胱がん、etc. ）
組織が⼊⼿しにくい、古い
（胆道がん、膵がん、前⽴腺がんetc. ）

腫瘍量が少ない、肺転移単独 腫瘍量が多い、肝転移

1st line前、治療変更時、標的治療後、
腫瘍組織に治療修飾が⼊っている

治療中、病勢がstable

バイオマーカー TMB-H、LOHを期待、Tissueベースの治験



Patient JourneyにおけるctDNA NGS

Wan JCM, et al. Nat Rev Cancer 2017.29

残存腫瘍の検出
ü MRD確認による
再発リスク評価

予後予測早期発⾒
ü 症状出現前の
スクリーニング

治療モニタリング 薬剤選択
ü 遺伝⼦異常に応じた標
的治療の選択



Assessment of MRD by ctDNA Analysis

Yoshino T, et al. ESMO2019.30
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Post-operative ctDNA and Recurrence

31

curative intended treatment and until radiologic relapse de-
tection, plasma samples remained ctDNA positive. We ob-
served an increase in the ctDNA variant allele frequency in all
patients, up to 300-fold (median, 5; 95% CI, 1.4-174.0), indi-
cating that the tumor burden often increased notably while the
patients awaited radiologic detection of the relapse (Figure 3B).

ctDNA Analysis of Clinically Actionable Mutations
Having shown that longitudinal ctDNA analysis enables de-
tection of micrometastatic disease months before radiologic
relapse, we next investigated whether the ctDNA analyses in
parallel could inform about the presence of potentially action-

able mutations at this early recurrence time point. We identi-
fied 11 patients with disease recurrence, available longitudi-
nal samples, and clinically actionable mutations identified by
primary tumor whole-exome sequencing (eTable 10 in the
Supplement). As a proof-of-concept analysis, additional mul-
tiplex PCR panels targeting the actionable mutations were de-
signed and applied to the longitudinal samples. For 7 of the 11
patients (63.6%), an actionable mutation was detected al-
ready in the first ctDNA-positive sample; when all ctDNA-
positive samples were analyzed, 9 of the 11 patients (81.8%) had
actionable mutations (Figure 3C). We observed a significant cor-
relation (Spearman ρ = 0.92; R2 = 0.85; P < .001) between the

Figure 2. Preoperative and Postoperative Circulating Tumor DNA (ctDNA) Monitoring in Patients With Colorectal Cancer (CRC)
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A, Kaplan-Meier estimates of recurrence-free survival (RFS) for 94 patients with
stages I to III CRC stratified by postoperative day 30 ctDNA status. The 3
censored ctDNA-positive patients were all treated with adjuvant chemotherapy
(ACT) and were likely cured by this treatment (see patients 33, 62, and 130 in
B). B, Recurrence rate and longitudinal ctDNA status in ctDNA-positive patients
receiving ACT. C, Kaplan-Meier estimates of RFS for 58 ACT-treated patients,
stratified by ctDNA status at first post-ACT visit. D, Kaplan-Meier estimates of

RFS for 75 patients with longitudinal samples, stratified by longitudinal
post–definitive-treatment ctDNA status. A patient was classified as testing
positive if 1 or more plasma samples after definitive treatment was ctDNA
positive. The Kaplan-Meier plots were halted when the proportion of patients in
follow-up was less than 10%. Shaded areas in the Kaplan-Meier plots indicate
95% CIs. HR indicates hazard ratio.
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tracking of multiple mutations including drivers and passen-
gers is beneficial for MRD detection.

We next sought to explore whether detection of ctDNA 
MRD was associated with outcome. FFP at 36 months after 
the MRD landmark was 0% in patients with detectable and 
93% in patients with undetectable ctDNA MRD (P < 0.001, HR 
43.4; 95% CI, 5.7–341; Fig. 3A). Only 1 patient who ultimately 

recurred had undetectable ctDNA at the MRD landmark, 
and in this patient ctDNA became detectable 8 months 
later, coincident with local disease recurrence (Supplementary 
Fig. S4). Analysis of disease-specific survival (DSS) and OS 
revealed similar results (Fig. 3A and B; Supplementary Fig. S5), 
with patients with undetectable ctDNA at the MRD landmark 
experiencing significantly better long-term survival than those 

Figure 3.  Detection of MRD in patients with localized lung cancer. Kaplan–Meier analysis of (A) freedom from progression (left) and disease-specific 
survival (right) stratified by detection of ctDNA at the MRD landmark (first posttreatment blood draw within 4 months of treatment completion); ctDNA 
MRD detected (n = 17), not detected (n = 15). P value was calculated by the log-rank test and HR by the Cox exp(beta) method. B, Event chart showing 
progression by RECIST 1.1 criteria and survival of patients with ctDNA detected at the MRD landmark (red) and patients with no ctDNA detected at the 
MRD landmark (black). C, Likelihood of detecting ctDNA at the MRD landmark (mean + SEM) by simultaneously tracking all known mutations (n = 65; 
CAPP-seq), or tracking each mutation separately (n = 65; single reporter). Data represent mean + SEM. P values were calculated by the Student t test.  
mo, months; tx, treatment.
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Colorectal cancer (Signatera) Lung cancer (CAPP-seq)

Breast cancer (ddPCR)

A310006, ctDNA sequencing by MPS revealed no additional genetic
events to the PIK3CA mutation found in the primary cancer [using
AmpliSeq Personal GenomeMachine (PGM) because there was insuf-
ficient DNA for capture sequencing], suggesting homogeneity in the
genetics of the MRD for this patient (fig. S2). However, in all other
patients, we uncovered diversity in the genetics of MRD compared
to the primary cancer (Fig. 7 and fig S2). For example, plasma DNA
sequencing revealed substantial divergence of the genetics of the ctDNA
arising from MRD compared to the original primary tumor for patient
A310012 (fig. S2).

In patient A310003, sequencing of ctDNA revealed the presence of
a PIK3CAmutation present in both the primary andmetastatic lesion;
however, the repertoire of somatic mutations found in the plasma
(ctDNA arising from MRD) was more similar to that of the subse-
quently biopsied metastatic relapse than that of the primary cancer
(Fig. 7A). In particular, ctDNA sequencing identified an activating
FGFR1 K656E mutation that was not present in the analyzed primary
tumor biopsy but was present in the metastasis (Fig. 7A). The FGFR1
K656E mutation is directly paralogous to the FGFR3 K650E activating

mutation that is frequently found in bladder cancer and thanatophoric
dysplasia type II (18, 19). Similarly, ctDNA sequencing identified loss
of an ESR1 E380Q mutation found in the primary tumor, but not in
the metastasis, anticipating loss of ER in the metastasis, which was
confirmed by immunohistochemistry (fig. S4A). Sequencing of two foci
of residual primary tumor after chemotherapy provided evidence of
consistent clonal selection compared to the primary tumor before
treatment, although the changes did not predict those that were found
in the subsequent metastasis (Fig. 7A).When tracked by dPCR, the pri-
mary tumor PIK3CAmutation remained present in plasma DNA and
metastasis, indicating an early clonal event in the cancer.

In patient A310035, sequencing ctDNA before relapse predicted
acquisition of a SYNE1 S1244Ymutation in the subsequently biopsied
metastasis, as well as enrichment for a GATA3 frameshift mutation
and loss of a STAT3 mutation (Fig. 7B). In this patient, enrichment
for the SYNE1mutation was demonstrated in the residual tumor after
chemotherapy (fig. S4B). Finally, in patient A310004, sequencing of
the relapsed tumor revealed an RB1 R320* somatic mutation that
was not detectable by sequencing of the plasma ctDNA taken 8.1months
before relapse (13 months after surgery) (Fig. 7C). We developed and
optimized a multiplex dPCR assay (fig. S4C) to track this mutation,
along with the other two mutations inANK3 andXIRP2 that were pres-
ent in both the primary tumor and the metastatic recurrence in this pa-
tient. dPCRdemonstrated that theRB1mutationwas a late event, only first
detectable in a plasma sample taken 16.1 months after surgery, then
expanding in frequency on serial sampling at relapse (Fig. 7C). This sug-
gests that genetic diversity develops in expanding micrometastatic dis-
ease before relapse and that mutation tracking may have the potential to
identify MRD at a point before genetic diversity develops.

DISCUSSION
Here, we show that ctDNA mutation tracking can detect MRD non-
invasively and identify earlier which patients are at risk of cancer re-
currence. We devised an assay pipeline that uses baseline primary
tumor mutations to develop personalized dPCR assays to track
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Fig. 4. Mutation tracking in serial plasma samples predicts early
relapse. (A) Disease-free survival according to the detection of ctDNA
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P value determined by log-rank test. Data are from n = 37 patients. (B)
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diagnostic accuracy of the ctDNA assay for predicting postoper-
ative recurrence was 89% (95% CI, 76%–96%).

Figure 3E shows that in themajority of the 27 patients inwhom
ctDNA correctly predicted recurrence of their PDAC, the detection
of ctDNA preceded the detection of disease recurrence by imaging
[22/27 (81%)]. The median lead time of ctDNA relative to
imaging was 84 days (IQR ¼ 25–146). Although CA 19-9 was
not collected as part of this study, several patients had serial
clinical CA 19-9 values available. In some patients, CA 19-9 and
ctDNA levels had matching dynamics (Fig. 4A and B). In other
patients, the additional value of ctDNAwas evidentwhenCA19-9
remained lowdespite disease recurrence (Fig. 4C), orwhenCA19-
9 was undetectable (Fig. 4D).

Detection of ctDNA during follow-up was associated with a
medianOSof 17months, whilemedianOSwas not yet reached at
30 months for patients without detectable ctDNA during follow-
up (P¼ 0.011; Fig. 1D). At the conclusion of the study period, 16

of 29 (55%) patients with detectable ctDNA during follow-up
had died (Fig. 3A and B), compared with three of 17 (18%)
patients who had consistently negative plasma samples (P ¼
0.013; Fig. 3C and D).

ctDNA dynamics
ctDNA dynamics correlated with a response to treatment of

PDAC recurrence in several patients. For instance, patient 34
developed several hepatic metastases 138 days after pancreato-
duodenectomy (Fig. 4E). FOLFIRINOXwas started and themetas-
tases showed a dramatic response on CT imaging. Correspond-
ingly,KRAS ctDNAbecameundetectable and the patient currently
continues on chemotherapy with stable disease on imaging. In
another example, a patient developed local recurrence and was
subsequently treated with FOLFIRINOX followed by radiothera-
py (Fig. 4F). A radiographic response was observed, consistent
with a decrease in both ctDNA and CA 19-9 levels.
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Figure 1.
A and B, Patients with preoperative detectable KRAS ctDNA had decreased RFS and OS. C, Patients with detectable KRAS ctDNA in the immediate postoperative
period had decreased RFS.D, Patient with detectable KRAS ctDNA during follow-up had decreased OS.
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Genome-wide cell-free DNA fragmentation in 
patients with cancer
Stephen Cristiano1,2,15, Alessandro Leal1,15, Jillian Phallen1,15, Jacob Fiksel1,2,15, Vilmos Adleff1, Daniel C. Bruhm1,  
Sarah Østrup Jensen3, Jamie E. Medina1, Carolyn Hruban1, James R. White1, Doreen N. Palsgrove1, Noushin Niknafs1,  
Valsamo Anagnostou1, Patrick Forde1, Jarushka Naidoo1, Kristen Marrone1, Julie Brahmer1, Brian D. Woodward4,  
Hatim Husain4, Karlijn L. van Rooijen5, Mai-Britt Worm Ørntoft3, Anders Husted Madsen6, Cornelis J. H. van de Velde7,  
Marcel Verheij8, Annemieke Cats9, Cornelis J. A. Punt10, Geraldine R. Vink5, Nicole C. T. van Grieken11, Miriam Koopman5, 
Remond J. A. Fijneman12, Julia S. Johansen13, Hans Jørgen Nielsen14, Gerrit A. Meijer12, Claus Lindbjerg Andersen3,  
Robert B. Scharpf1,2* & Victor E. Velculescu1*

Cell-free DNA in the blood provides a non-invasive diagnostic 
avenue for patients with cancer1. However, characteristics of 
the origins and molecular features of cell-free DNA are poorly 
understood. Here we developed an approach to evaluate 
fragmentation patterns of cell-free DNA across the genome, and 
found that profiles of healthy individuals reflected nucleosomal 
patterns of white blood cells, whereas patients with cancer had 
altered fragmentation profiles. We used this method to analyse 
the fragmentation profiles of 236 patients with breast, colorectal, 
lung, ovarian, pancreatic, gastric or bile duct cancer and 245 
healthy individuals. A machine learning model that incorporated 
genome-wide fragmentation features had sensitivities of detection 
ranging from 57% to more than 99% among the seven cancer types 
at 98% specificity, with an overall area under the curve value of 
0.94. Fragmentation profiles could be used to identify the tissue 
of origin of the cancers to a limited number of sites in 75% of 
cases. Combining our approach with mutation-based cell-free 
DNA analyses detected 91% of patients with cancer. The results 
of these analyses highlight important properties of cell-free DNA 
and provide a proof-of-principle approach for the screening, early 
detection and monitoring of human cancer.

Much of the morbidity and mortality of human cancers world-
wide results from late diagnosis when therapeutic intervention is less 
effective2,3. Unfortunately, clinically proven biomarkers that can be 
used to broadly diagnose and treat patients are not widely availa-
ble4. Recent analyses of circulating cell-free DNA (cfDNA) suggest 
that approaches using tumour-specific alterations may provide new 
opportunities for early diagnosis, but not all patients have detectable 
changes5–8. Whole-genome sequencing (WGS) of cfDNA can iden-
tify chromosomal abnormalities in patients with cancer but detecting 
such alterations may be challenging owing to the small number of 
abnormal chromosomal changes9–12. Analyses of the size of fragments 
of cfDNA have been contradictory, indicating both increases13–15 and 
decreases in the overall distribution of cfDNA12,16,17–19. Recent stud-
ies have suggested that size selection of small cfDNA can increase 
enrichment of circulating tumour DNA in patients with late-stage 
cancer17. Nucleosome positions18,20, patterns near transcription start 
sites20,21, and the end positions of cfDNA22 may be altered in cancer, 
but the sequencing needed to identify nucleosomes is impractical for 
routine analyses.

Conceptually, the sensitivity of any cfDNA approach depends on the 
number of alterations examined as well as the technical and biological 
limitations of detecting such changes. As a typical blood sample con-
tains approximately 2,000 genome equivalents of cfDNA per millilitre 
of plasma5, the theoretical limit of detection of a single alteration can 
be no better than one in a few thousand mutant to wild-type mole-
cules. We hypothesized that the detection of a larger number of alter-
ations in the genome may be more sensitive for detecting cancer in 

1The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. 2Department of Biostatistics, Johns Hopkins Bloomberg School of Public 
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Fig. 1 | Schematic of DELFI approach. Blood is collected from healthy 
individuals and patients with cancer. cfDNA is extracted from plasma, 
processed into sequencing libraries, examined by WGS, mapped to the 
genome, and analysed to determine cfDNA fragmentation profiles across 
the genome. Machine learning is used to categorize whether individuals 
have cancer and identify the tumour tissue of origin.
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stage IV RCC versus stage IV urothelial carci-
noma, resulting in a mean AUROC of 0.98. To 
investigate the performance of cfMeDIP–seq 
of urine samples, they conducted the same 
analyses on urinary cfDNA from patients with 
RCC and those without. The mean AUROC 
across 100 train–test partitions was 0.86. Note 
that the protocol used to generate these data 
was optimized for the analysis of plasma, 
therefore the performance of urine- based 
classifications could potentially be further 
improved by tailo ring the experimental and 
computational approaches.

These two studies highlight the superb 
capabilities of liquid biopsy plus methyla-
tion analysis as a resource for accurate and 
noninvasive cancer detection and subtyping. 
These data also validate the performance of 
the cfMeDIP–seq platform, which can sensi-
tively detect tumour epigenetic signatures in 
body fluids even in the highly challenging 
scenarios described in these reports. This 
methylome- based approach is noninvasive, 

AGTCAG

Plasma

Training

Testing
cfMeDIP-seq

5CORNG�EQNNGEVKQP�CPF�GZVTCEVKQP��OGVJ[NCVKQP�RTQȮNKPI Computational predictions and performance evaluation

Urine

Select features

Learn predictive model

Predict test samples

Cancer or no cancer

Which
subtype?

Performance 
evaluation

/GVJ[NCVKQP�RTQȮNG�
of urinary cfDNA

/GVJ[NCVKQP�RTQȮNG�
of plasma cfDNA

Fig. 1 | Applications of cfMeDIP-seq for the detection of intracranial tumours and renal cell carcinomas. Cell- free DNA (cfDNA) from plasma  
or urine is extracted and subjected to methylation profiling using the cell- free methylated DNA immunoprecipitation and high- throughput sequencing 
(cfMeDIP- seq) method. The training samples are used to select features and develop predictive models that reliably discriminate between patients with 
cancer and those without, as well as between various cancer subtypes. The held- out testing samples are used to validate the classification performance. 
If a patient is classified as having cancer, additional classifications can be performed to determine the subtype.

cost- saving, efficient (turn- around time of a 
week) and applicable to various sources of 
cfDNA (including blood and urine). If vali-
dated in larger cohort studies, such a liquid 
biopsy test could be a game- changer for the 
diagnosis and management of multiple types 
of cancer. Furthermore, given that many 
diseases of different organs can cause epige-
netic changes that are potentially detectable 
in cfDNA, we anticipate that noninvasive, 
cfDNA methylome- based diagnostics will 
have an increasingly important role in disease 
screening and health monitoring in future.
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Summary
p ctDNA解析はがんゲノム医療において従来の組織ベースの遺伝⼦パネル
検査を上回る有⽤性が⽰唆されており、進⾏⼤腸がんにおいてはがんゲノ
ムプロファイリングやclonal evolutionの評価としての使⽤が増えてくること
が予想される。

p さらに、ctDNA解析は腫瘍が無い状況のMRDや早期がんの同定に役⽴
つ可能性があり、あらゆるがん種・あらゆるステージでの応⽤が期待されて
いる。
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