The Development of MSI-H Cancer Therapy

Development of Anti-Cancer Drugs Forum Tokyo , Japan, 18, February 2017

Andrew Joe, MD Executive Director, Late Stage Oncology Merck & Co., Inc., Rahway, NJ USA

PD-L1 and PD-L2 Block T Cells from Attacking Cancer Cells

- PD-1 is an antigen expressed on the surface of activated T-cells
- PD-1 interacts with its ligands PD-L1 and PD-L2 expressed on cancer and surrounding cells
- This inhibits activation of T lymphocytes and prevents an anti-tumor immune response

PD-1 inhibition with Keytruda reactivates T cells to attack and kill cancer cells

Pembrolizumab is a Humanized IgG4, High-Affinity Anti-PD-1 Blocking Antibody

- No cytotoxic (ADCC/CDC) activity
- Low occurrence of anti-drug antibodies and no impact on pharmacokinetics

Presented by: Antoni Ribas ASCO 2013

KEYTRUDA Development Program

First anti-PD-1 to market in the US

- Approvals in Melanoma, Non-Small Cell Lung Cancer, (1L and 2L+ PD-L1+), Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma
 - Demonstrated overall survival
 - vs. ipilimumab in melanoma
 - vs. docetaxel in 2L+ PD-L1+ NSCLC
 - vs chemo in previously treated patients with advanced bladder cancer
- Data in first line NSCLC for both Monotherapy and in Combination with chemotherapy
- Clinical activity in more than 20 different tumor types
- More than 30 ongoing registration-enabling studies
- 5 FDA Breakthrough Designations

Keytruda Monotherapy Has Shown Activity in 20 Tumors

1. Daud A et al. ASCO 2015; 2. Garon EB et al. ESMO 2014; 3. Seiwert T et al. ASCO 2015; 4. Plimack E et al. ASCO 2015; 5. Nanda R et al. SABCS 2014; 6. Bang YJ et al. ASCO 2015; 7. Moskowitz C et al. ASH 2014; 8. Zinzani PL et al. ASH 2015; 9. Alley EA et al. AACR 2015; 10. Varga A et al. ASCO 2015; 11. Ott PA et al. 2015 ASCO; 12. Doi T et al. ASCO 2015; 13. Hsu C et al. ECC 2015; 14. Ott PA et al. ECC 2015; 15. Bang Y-J et al. ECC 2015; 16. O'Neil B et al. ECC 2015; 17. Rugo HS et al. SABCS 2015; 3. Frenel JS et al. ASCO 2016; 19. Mehnert JM et al. ASCO 2016; 20. Cohen R et al. ASCO 2016. 5

Pembrolizumab Late Development Program

Clinical trials are ongoing in common, uncommon, and rare cancers

Biomarker Program to Identify Cancers Likely to Respond to Pembrolizumab Therapy

Goal is to identify patients most likely to benefit from treatment

KEYNOTE (KN) 016

 Demonstration of clinical efficacy in a biomarkerdefined population

MSI-H Cancer Has a High Mutational Burden

- Mismatch repair (MMR) deficiency refers to deficiency in proteins responsible for DNA MMR: MSH2, MSH6, MLH1, PMS2.
- MMR deficiency leads to the MSI-H phenotype.
- MMR deficient/MSI-H cancers harbor thousands of mutations (i.e., high mutational burden; hypermutated phenotype).

Rationale and Hypothesis

- Hypothesis: Pembrolizumab is effective in treating any MSI-H cancer
 - MSI-H cancer, regardless of tumor histology, is associated with a high mutational burden (hypermutated phenotype)
 - High mutational burden leads to high neoantigen expression
 - High neoantigen expression leads to autologous immune recognition of cancer cells
 - By blocking PD-1 on tumor neoantigen-specific T cells, pembrolizumab can activate antitumor immune responses

Jonathan C. Dudley et al. Clin Cancer Res 2016;22:813-820

Biological Rationale for Tumor-Agnostic Approa

 PD-1 blockade with pembrolizumab can restore effective antitumor immunity in MSI-H cancer, regardless of cancer type

Pembrolizumab Therapy of MSI-H Cancer

- MSI-H cancer represents a unique, biomarker-identified disease with a common immunobiology
- MSI-H cancers are readily identifiable using locally available assays (e.g., PCR, IHC)
- MSI-H associated with worse prognosis in advanced CRC; limited data in MSI-H gastric and endometrial cancer – worse prognosis (or unclear association with prognosis) in advanced-stage disease

		Study Des	sign
ŭ	olorectal Ca	ncers	Non-Colorectal Cancers
<u>Cohor</u> Deficie	<u>-t A</u> nt in	<u>Cohort B</u> Proficient in	<u>Cohort C</u> Deficient in
Mismatch (n=2	Repair M 8)	ismatch Repair (n=25)	Mismatch Repair (n=30)
• An	ti-PD1 (Pembrolizu	umab) – 10 mg/kg ever	y 2 weeks
• Mi: def	smatch repair test ficiency or PCR-ba	ing was performed loca sed test for microsatell	ally using standard IHC for MMR lite instability
• He	re we report and u oorted at ASCO 203	update from the origina 15	al 13 CRC Cohort A patients
PRESENTED AT: ASCO Slides ore the property of the (ANNUAL MEETING outhor. Permission required for reuse.	16	

D Le ASCO 2016

Demographics

Characteristic	MMR-deficient CRC n=28	MMR-proficient CRC n=25
	2	
Median Age (range)– years	49 (26-75)	62 (32-79)
Gender-female no. (%)	13 (46)	9 (36)
ECOG PS-zero	5 (18)	7 (28)
Liver Mets	14 (50)	15 (60)
Median Prior Regimens	С	4
Lynch Syndrome Yes No Unknown	15 (54) 2 (7) 11 (39)	0 (0) 25 (100) 0 (0)

Best Radiographic Response

	MMR-deficient CRC	MMR-proficient CRC
Type of Response-no (%)	n=28	n=25
Complete Response	3 (11)	0 (0)
Partial Response	13 (46)	0 (0)
Stable Disease (Week 12)	9 (32)	4 (16)
Progressive Disease	1 (4)	11 (44)
Not Evaluable ¹	2 (7)	10 (40)
<i>Objective Response Rate (%)</i>	16 (57)	0 (0)
95% CI	39 - 73	0 -13
Disease Control Rate (%)	25 (89)	4 (16)
95% CI	73 - 96	6 - 35
Median Follow Up (mos)	9.3	9

¹Patients were considered not evaluable if they did not undergo a 12 week scan

D Le ASCO 2016

Summary

- PD-1 blockade with pembrolizumab is highly active in MRD metastatic colorectal cancer
- Complete and durable responses are seen in more than 50% of patients
- Currently, 5 patients (18%) have reached the two year mark and anti-PD-1 has been held. These patients are under active surveillance.
- Single agent studies with pembrolizumab in 1st line MRD metastatic colorectal cancer are actively recruiting

PD-1 Blockade in Mismatch Repair Deficient **Cancer Independent of Tumor Histology**

Crocenzi, Richard Goldberg, George Fisher, Tim Greten, Christian Meyer, Amanda Nickles Fader, Deborah Armstrong, Minori Koshiji, Bert Vogelstein, and Dung Le Aleksandra Eyring, Nilo Azad, Tianna Dauses, Daniel Laheru, James Lee, Todd Luis Diaz, Jr., Jennifer Durham, Hao Wang, Bjarne Bartlett, Holly Kemberling,

The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD Ohio State University Comprehensive Cancer Center, Columbus, OH Providence Cancer Center, Portland, OR Stanford University School of Medicine, Stanford, CA University of Pittsburgh, Pittsburgh, PA National Cancer Institute, Bethesda, MD Merck & Co., Inc., Kenilworth, NJ

Colorect	al Cancers	Non-Colorectal Cancers
<u>Cohort A</u> Deficient in	<u>Cohort B</u> Proficient in	<u>Cohort C</u> Deficient in
Aismatch Repair (n=25)	Mismatch Repair (n=25)	Mismatch Repair (n=21)
 Anti-PD1 (P 	embrolizumab) – 10 mg/	/kg every 2 weeks
Mismatch r MMR defici	epair testing was perforr iency or PCR-based test f	med locally using standard IHC for or microsatellite instability
ESENTED AT: ASCO ANNUAL M	EETING 16	

Study Design

<u>Cohort C</u> Deficient in Mismatch Repair (n=21)

Ongoing Expansion (n=+50)

Non-Colorectal Cancers Deficient in Mismatch Repair (n=30)

	Key Eligibility for Cohort C
•	Histologically proven metastatic or locally advanced mismatch repair deficient
	non-colorectal solid tumor malignancy
	-mismatch repair deficiency documented by IHC showing deficiency in MLH1,
	MSH2, MSH6, or PMS2 or microsatellite instability detected by <mark>PCR</mark> (instability
	in 2 or more loci); testing performed locally
•	Measurable disease
•	Progressive disease
•	Received at least 1 prior therapy
•	ECOG 0-1
•	Adequate renal, hepatic, bone marrow reserve
•	Brain mets allowed if treated and stable (no imaging required)
•	No prior anti-PD-1/PD-L1/PD-L2, anti-CD137, anti-OX-40, anti-CD40, anti-CTLA4
•	No HIV, hepatitis B, hepatitis C
•	No autoimmune disease or active steroids
PRESEN Slides o	NTED AT: ASCO ANNUAL MEETING '16 one the property of the output Permission required for reuse.

2016	
ASCO	
L Diaz,	

Baseline Characteristics

MMR-deficient non CRC

n=30 (%)	56 (36-92)	14 (47)	6 (20)		9 (30)	7 (23)	4 (13)	4 (13)	3 (10)	3 (10)	30 (100)	16 (53)	2		5 (17)	7 (23)	18 (60)
Characteristic	Median Age (range)– years	Gender-female no. (%)	ECOG PS-zero	Primary-location	Endometrial	Ampullary/biliary	Pancreatic	Small bowel	Gastric	Other (prostate, thyroid, sarcoma)	Metastatic	Liver Mets	Median Prior Regimens	Germline mutation or Lynch Syndrome	Yes	No	Unknown

L Diaz, ASCO 2016

Responses

α Ц

Endometrial

Pancreatic

PRESENTED AT: ASCO ANNUAL MEETING '16 Sides ore the property of the outhor. Permission required for reuse.

Week 12

Baseline

L Diaz, ASCO 2016

Objective Responses

MMR-deficient non CRC

n=30	9 (30)	7 (23)	5 (17)	7 (23)	2 (7)	16 (53)	36-70	21 (70)	52 - 83	10 mos	
Type of Response-no (%)	Complete Response	Partial Response	Stable Disease (Week 12)	Progressive Disease	Not Evaluable ¹	Objective Response Rate (%)	95% CI	Disease Control Rate (%)	95% CI	Median Follow Up	

¹Patients were considered not evaluable if they did not undergo a 12 week scan

PRESENTED AT: ASCO ANNUAL MEETING '16 Stides one the property of the outhor. Permission required for reuse.

non and back or and controls summarian the second state

Conclusions

- Mismatch repair deficiency can be determined using existing commercially available tests.
- Mismatch repair deficient cancers are responsive to checkpoint blockade with anti-PD1.
- mismatch repair deficiency including endometrial, gastric, Durable clinical responses are noted across tumors with duodenal, pancreatic, ampullary, and biliary cancers.
- Expected toxicities are manageable.

Ongoing Clinical Studies

- A Phase II Study of Pembrolizumab (MK-3475) as Monotherapy in Subjects With Previously Treated Locally Advanced Unresectable or Metastatic (Stage IV) Mismatched Repair Deficient or Microsatellite Instability-High Colorectal Carcinoma (KEYNOTE-164)
 - Locally confirmed MMR deficient or MSI status
- A Clinical Trial of Pembrolizumab (MK-3475) Evaluating Predictive Biomarkers in Subjects With Advanced Solid Tumors (KEYNOTE 158)
 - Any advanced solid tumor, with the exception of colorectal carcinoma (CRC), which is Microsatellite Instability (MSI)-High (MSI-H)

Conclusions

- There is a strong biological rationale for anti-PD-1 pembrolizumab therapy of MSI cancer, regardless of tumor histology
- Clinical trials have demonstrated durable clinical efficacy of pembrolizumab for the treatment of MSI-H colorectal and non-colorectal cancer
- Challenges in drug development for a tumor-agnostic indication
 - Study design for providing evidence of clinical efficacy (vs traditional randomized controlled studies)
 - Identification of study population

