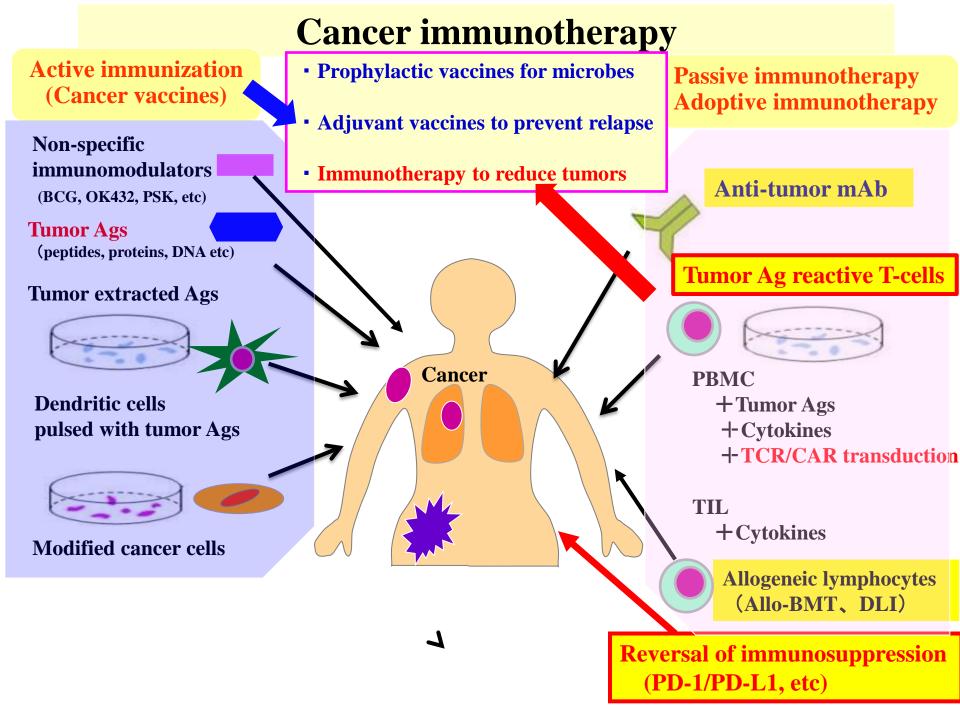
Progress of cancer immunotherapy and its future perspectives

Yutaka Kawakami

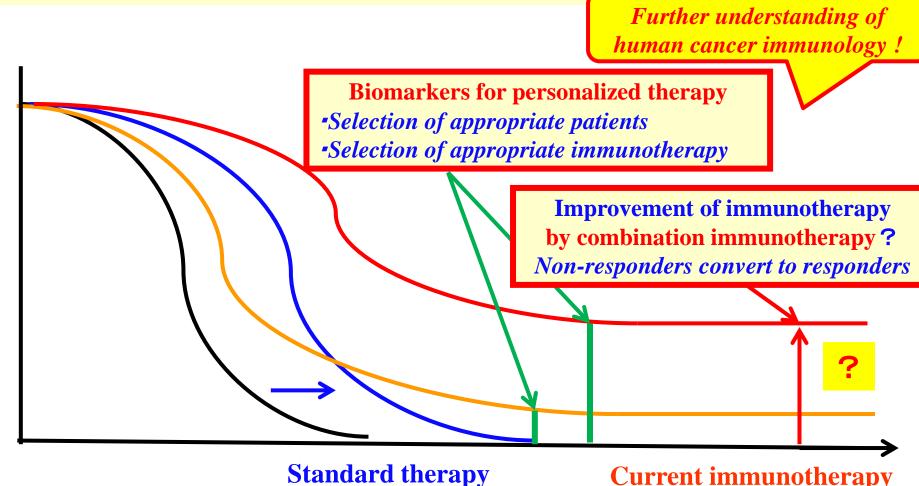
Division of Cellular Signaling
Institute for Advanced Medical Research
Keio University School of Medicine

Cancer immunotherapy Current status and future perspectives

Cancer immunotherapy is now a promising therapy!


- Durable responses for advanced cancer patients with multiple cancer types
- Immune-checkpoint blockade (PD-1/PD-L1, CTLA4)
- T-cell based adoptive cell therapy (TIL, TCR/CAR-T cells)

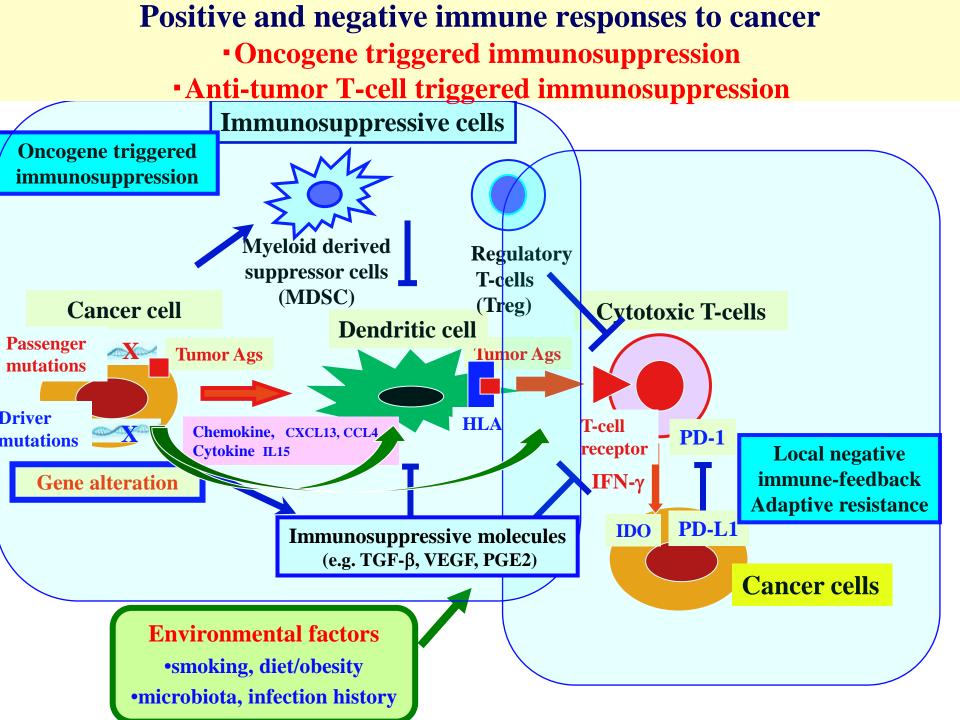
The clinical issues to be solved;


- Identification of biomarkers for personalized therapy
 - Selection of appropriate patients / Selection of appropriate immunotherapy
- Development of combination immunotherapy particularly for non-responsive patients to the current immunotherapy

•Further understanding of immunopathology of cancer particularly in tumor microenvironment and it's modulation!

- Individual difference of immune status in cancer patients
- It's correlation with response to various cancer therapies
- Multiple mechanisms of immune-evasion; Appropriate interventions!
- Personalized immunotherapy based on the immune-evaluation!
- Combination immunotherapy targeting multiple key regulation points!

Important issues for development of immunotherapy


(e.g. Chemotherapy / molecular target therapy)

Current immunotherapy (e.g. anti-CTLA-4 / PD-1 Ab)

Immunomonitoring methods?

Survival

Clinical evaluation?
irRC, irRECIST, delayed clinical effects

Immunotherapy using Ab specific for targets on T-cells

Anti-PD-1Ab (Nivolumab)

Response rate

 Melanoma
 26/94 (28%)

 RCC
 9/33 (27%)

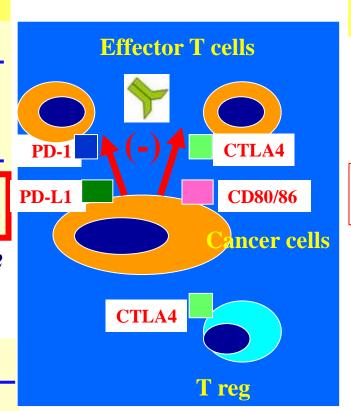
 Lung cancer
 14/76 (18%)

Durable responses (over 1 year or more) in 20 of 31 (65%) responders

Topalian SL, et al, NEJM 2012

Anti-PD-L1Ab

Response rate


 Melanoma
 3/16 (19%)

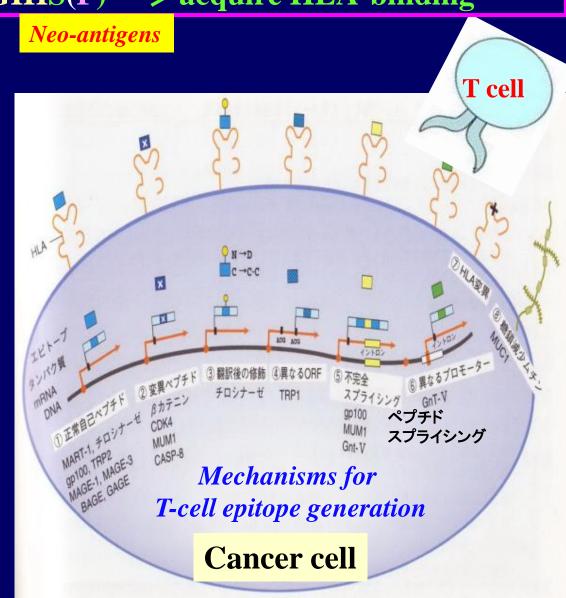
 RCC
 2/17 (12%)

 Lung cancer
 4/15 (16%)

Less immune-adverse effects than anti-CTLA4 Ab

Brahmer JR et al, NEJM 2012

Anti-CTLA4 Ab (Ipilimumab)


Median Survival:10mo vs 6.4mo (n=676)

Hodi FS, et al, NEJM 2010

CTLA-4/Treg is involved in peripheral tolerance —> More autoimmune AE

Human tumor antigens recognized by tumor infiltrating T-cells

- Mutated antigens derived from DNA alterations in cancer cells (β-catenin, etc) SYLDSGIHS(F) —>acquire HLA-binding
- Viral related antigens (HPV-E6/E7)
- Cancer-testis antigens (MAGEs, NY-ESO-1)
- Tissue specific antigens (MART-1/Melan-A, gp100)
- Over-expressed antigens
- Allo-antigens
- Others

Novel personalized immunotherapy targeting individual mutations

Identification of mutations by exomicsequencing of autologous cancer cells

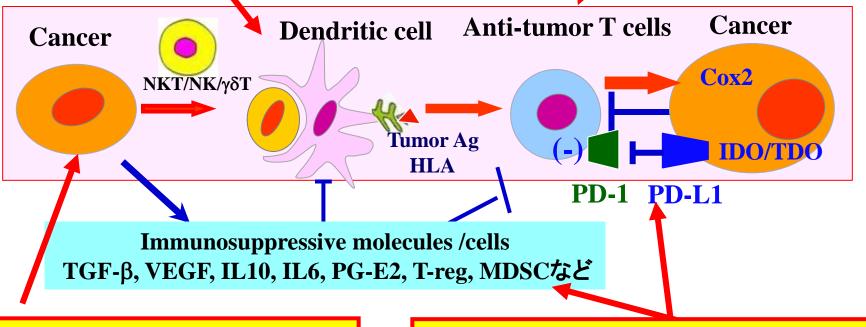
Prediction of HLA binding peptides by computer argorithsms

Confirmation of T cell epitopes by

- in vitro peptide induction of T cells
- immunization of HLA transgenic mice
- using HLA tetramers

- Active immunization with peptides / mRNA
- ACT with TIL / TCR-transduced T cells

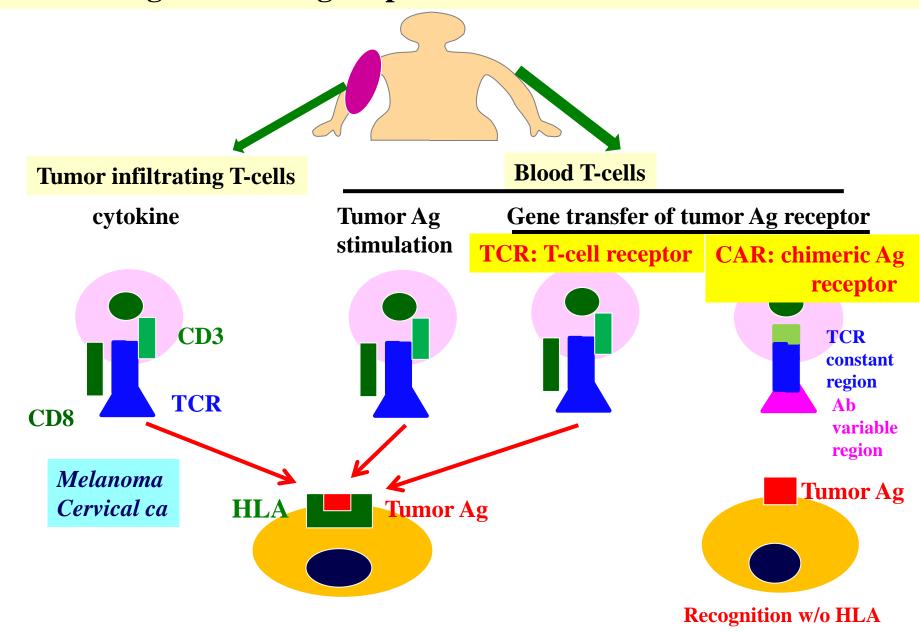
Issues to be solved in the immuno-checkpoint blockade

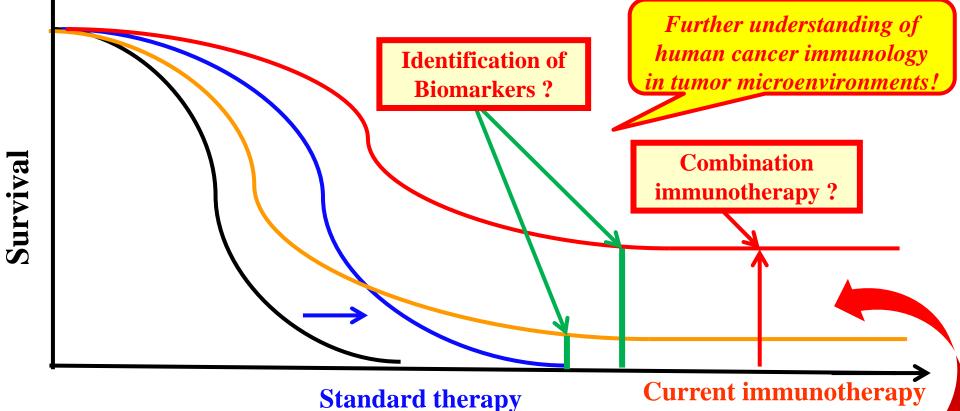

- When used? Advanced cancer, frontline treatment, adjuvant setting
- When stopped? How long should be used? (high cost, economical issues)
- Personalized immunotherapy
 - Unresponsive cancer: pancreas ca., MSS-CRC, myeloma, prostate ca,
 - Non-responders convert to responders
 - *Biomarkers (PD-L1 exp, CD8⁺T cell infiltration, DNA mutations, MDSC, Treg, etc) through systematic analysis of clinical trials (Omics, microbiota, immuno-analysis)
 - *Pretreatment, early on-treatment
 - *Biomarkers can be new treatment targets
- Combination immunotherapy with personalized interventions
 - Immunogenic cancer cell death, adjuvant, vaccine, immune-regulators
 - Enhanced anti-tumor effects w/o increase of adverse effects?
 - Which combination? Concurrent vs sequential?
 - Combination of chemotherapy / molecular target therapy
 w/ checkpoint blockade: high immunogenic mutation (melanoma, NSCLC)
 w/ ACT: less immunogenic leukemia, NSCLC, etc,

Combined immunotherapy targeting multiple key regulation points in anti-tumor T cell response

Tumor antigen vaccine Mutated Ags Cancer stem cell Ags

Augmentation of dendritic cell function Adjuvant (TLR3, STING), Ab (CD40 agonist)


T-cell activation / expantion Cytokines (IL2,IL7,IL15,IL21) Agonist Ab (4-1BB, OX40)など



in site tumor destruction
<Immunogenic cell death>
Chemotherapy Ab physical Virus, etc

Reversal of immunosuppression Signal inhibitors, Chemotherapy, IDO inhibitor, Ab (CTLA4, PD-1, LAG3, CCR4, TIM3, TIGIT), RNAi, etc

Adoptive cellular immunotherapy using tumor antigen specific *ex vivo* cultured T-cells

Personalized immunotherapy based on the immune evaluation

Anti-PD-1/PD-L1 Ab +

- Anti-CTLA4 Ab (Other costimulatory mole.)
- IDO/TDO inhibitor
- Molecular target / chemotherapy
- Radiation
- Cancer vaccine
- •T cell ACT
- Novel therapies

日本における個別化・複合がん免疫療法開発の課題

- *日本での複合免疫療法の臨床試験実施と病態解析研究を!
 - 複合免疫療法臨床試験のための企業間連携はすでに進んでいる!
 - ・新たな産学官連携の構築が必要(win-win situation, high cost, 得意分野)!

-アカデミアシーズ・ノウハウの効率的な企業への受け渡し

- •日本医療研究開発機構(AMED)(Japan Cancer Research Project)でのシーズ開発
- ·複合免疫療法の医師主導臨床試験の実施を! (AMEDにも期待?)
- ・企業にとって 真に有用なシーズ、適切な組み合わせ、評価法と対策の提言!

-企業治験におけるアカデミアによる病態解析(治療効果・副作用機序)

- ・治験段階での免疫学的解析―>次のステップのためのシーズ(診断・治療標的)!
- ・治験の空洞化問題 (臨床研究中核病院)
- ・企業にとって 真に有用な評価法、臨床データとその解釈、さらにその検証!
- ・全国レベルでのがん患者ネットワークの構築、臨床検体収集システム、
 - 各種システム生物学的解析拠点体制の構築 <AMEDへの期待!>
 - ・米国NCIの全国ネットワーク (e.g. 肺癌変異シークエンスシステム)
 - ・米国GoogleのCancer Immunotherapy開発への参画?
- ・日本における産官学コンソーシアムの確立 (議論の場の提供)
 - <米国SITC / CRI, EU-CIMT>

新しい医療の健全な均てん化・教育

- 異なる治療効果判定基準
 - RECISTだけでは不十分(irRCやirRECISTの併用)
- 化学療法や分子標的治療薬とは異なる副作用と対策
 - 免疫性副作用(皮膚炎、甲状腺炎、腸炎、肝炎など)
 - 間質性肺炎や下垂体炎、筋無力症などの重篤、致死的な副作用
 - 適正使用ガイドが作成されており、医療従事者は十分に熟知する必要
- 多職種医療チームへの教育
 - ガイドライン
 - 医師はもちろんのこと、がんチーム医療において、 薬剤師、看護師など広く各職種への教育体制も重要